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A Note on the Modified Scheme for Nonlinear Shallow-Water Equations
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Abstract (] An extension of the modified leap-frog scheme is made to solve the nonlinear shallow-water
equations. In the extended model. the physical dispersion of the Boussinesq equations is replaced by the numerical
dispersion resulted from the leap-frog finite difference scheme. The model is used to simulate propagations of a
solitary wave over a constant water depth and a linearly varying water depth, Obtained numerical results are
compared with available analytical and other numerical solutions. A reasonable agreement is observed.
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1. INTRODUCTION o E ) raHs2=0 @

In this study, an extension of the corrected modified In (1) and (2), § denotes the free surface displacement,

finite difference approximations described in Cho and P is the volume flux in x-direction, 4 is the still water

Yoon (1998) is made. The corrected modified finite dif- depth, H is the total water depth defined as H=h+(,

ference scheme is extended to include nonlinear effects by and g is the gravitational acceleration. Hereinafter, the
applying the leap-frog scheme to the nonlinear shallow- notation PY/H=U is used only for simplicity.

water equations. The numerical dispersion is manipulated

to play an equivalent role of the physical dispersion of the 2. MODIFIED EQUATIONS

Boussinesq equations by choosing spatial grid and time-

step sizes properly. The nonlinear shallow-water equations (1) and (2) are
The one-dimensional nonlinear shallow-water equations discretized with the leap-frog finite difference scheme as

over a constant water depth is considered for simplicity in

3 s . . C(H]/l_C(t—l/Z pn —pn ,
this note. The bottom frictional effects are excluded in this ! n LI M/zAx 12 g 3)
note. Then, the continuity and momentum equations can !
be written as . . . . , "
Pifll/z—Pi+1/2+ Upn2-U; +1/2+gHCi++1V2—Ci vz -0
a_q aP =0 %)) At Ax Ax
3t ox 1)
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In finite difference approximations (3) and (4), a stag-
gered mesh system has been used and the free surface
displacement { is defined at a node (i) and the
volume flux component in x-direction P is defined
at a node (i+1/2). The staggered mesh system is also
used in time (Cho and Yoon, 1998).

By applying Taylor series expansions of variables  and
P at a node (i, n) to (3) and (4) and arranging them, the

following equations can be obtained

a_q 0P _ (AN (AP _ )
o ¢ 24 8[3 2% ox*

B_P aU 06 (AD20°L Axd?U Aro*U

81 ox C"ax = 24 9x3 2 ox2 2 dxot =0 ®

in which C,=.gH, the truncation errors of (5) and
(6) are O[(Ax)?, (An‘] and O[(AY), (AD)', (Ax), At
Ax (Ary,

following leading order relationships have been used

respectively. To derive (5) and (6) the

9 AP _
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Furthermore, all the second and higher order time
derivatives are replaced by the corresponding spatial
derivatives similar to the linear case, and O(Af)=0O(h)
and O(A1)=O(h.gh) are used in (5) and (6) as also
used in Cho and Yoon (1998).

By eliminating P from (5) and (6), a combined modi-
fied equation for the nonlinear shallow-water equations

can be obtained as
2L ro2U ag JAD? 9%
- [ax +gHS 3 |- RS0

l:Axa?U+At a%U}
2 9x3 2 0dx2t

)

in which Cr=C,At/Ax) is the Courant number. If
the nonlinear terms vanish, (9) reduces to the one-
dimensional form of the combined modified equation
for the linear shallow-water equations derived by
Cho and Yoon (1998).

The Boussinesq equation over a constant depth can be
written as (Mei, 1989)

PR, ] o)
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in which the right-had side term represents the fre-
quency dispersion results from the vertical acceleration.
If this is ignored, the Boussinesq equation is simplified
to the nonlinear shallow-water equation.

By comparing (9) with the Boussinesq equation (10), it
is found that two equations are identical if the last term of

(9) is ignored and the following condition is satisfied
(Ax)2 = 4h2+ gh(Ar)? (1D

The condition (11) is also derived in the modified
equations for the linear shallow-water equations (Cho
and Yoon, 1998).

Since it is difficult to remove the last term of equation
(9), the corrected modified finite difference approxima-
tions are proposed as (Abbott et al., 1981; Cho and Yoon,
1998)

Cn+l/2_€n—l/2 n —pn
‘ i iv12 s
[ i + i+ 1 = O (12)
At Ax
+1 2oy +172 +172
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Ax Ax Ax

1
+E(Ufl+3/z— ue »— U}’;ll/2+ U?:Il/2) =0 (13)

After applying the same procedure to (12) and (13),

a combined modified equation for { can be derived.

3. Numerical Example

The corrected modified finite difference equations, (12)
and (13), are tested by applying to the propagation of a
solitary wave over a constant water depth and a linearly
varying water depth. Obtained numerical solutions are
compared with available analytical and other numerical
solutions.

In Fig. 1, a comparison is made for the solitary waves
propagation over a constant water depth. In numerical
computations, Ax=2h for A=0.051 (e= 0.05), Ax=
1.75h for A=0.1h (£=0.1) and Ax=1.75h for A=0.2h
(€ = 0.2) have been used. The time-step size is fixed as Ar
= 0.02 s. Although the numerical model produces slightly
deviated solutions from the analytical solutions, the over-
all agreement is excellent. The extended model produces
the numerical dispersion almost equivalent to the physical

dispersion of the Boussinesq equations.
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Fig. 1. Time histories of free surface profiles of solitary waves:
(a) x=0, 10h, 20h, 30h; (b) x=0, 10k, 20h, 30h. 40,
(c) x=0. 10h, 20h, 30h, 40k, 50h.

Nextly, the propagation of a solitary wave over a lin-
early varying depth is simulated. Although the extended
model is derived over a constant water depth, it also is
applied to the mildly varying topography. For simplicity,
the bottom topography is consisted of two constant depth
regions (regions 1 and 3) and one sloping region (region
2)inregion 1, h=1.0m and -35<x<0 m; in region 2,
h varies 1.0 m to 0.5 m and 0 <x<20 m; in region 3,
£=0.5 m and 20 <x <50 m. The angle of slope in region
2 is 1.432°. Since the water depth varies, a different spatial
grid size is used in each region; Ax = 1.75 m in region 1,
Ax=133 m in region 2 and Ax=0.875 m in region 3.
The spatial grid size of each region is equal to 1.75h,
where £ is a local water depth in regions 1 and 3 and an
averaged water depth in region 2. The grid size of
Ax =1.75h produces the numerical dispersion, which is
approximately equal to the physical dispersion of the
Boussinesq equations. The time-step size is fixed as 0.02
s. The wave height of the incident solitary wave is 0.1 m.
The initial condition is the horizontal velocity component
of a solitary wave as prescribed in Liu and Cho (1994).

In Fig. 2, numerical solutions of time histories of free-
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Fig. 2. Time histories of free surface profiles over a sloping
topography.

surface displacements at several locations are compared to
numerical solutions obtained by solving a variable coeffi-
cient KdV equation with the finite element method (Chen,
1995). Both numerical solutions agree well each other in
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region 2, while the present' model underestimates free-sur-
face displacements in comparison with numerical solu-
tions of the finite element method in region 3. This is
probably due to the frequency dispersion. However, the

overall accuracy of the extended model is promising.

4. CONCLUDING REMARKS

In this study, the corrected modified leap-frog scheme
is extended to solve the nonlinear shallow-water equa-
tions. A numerical model is developed by discretizing the
nonlinear shallow-water equations. The physical disper-
sion of the Boussinesq equations is replaced by the
numerical dispersion resulted from the leap-frog scheme.
The developed model is used to simulate propagations of
a solitary wave over a constant water depth and a linearly
varying depth. Obtained numerical results are compared
with analytical solutions. A reasonable agreement is
observed.

Although the extension is made only for one-dimen-
sional case, the numerical solutions are promising. The
one-dimensional model itself is also valuable to simulate
the propagation of tsunami near shoreline where the
nonlinear effects are probably dominating the whole sys-

tem.
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