• 제목/요약/키워드: Nonlinear optimal design

검색결과 595건 처리시간 0.043초

Nonlinear analysis based optimal design of double-layer grids using enhanced colliding bodies optimization method

  • Kaveh, A.;Moradveisi, M.
    • Structural Engineering and Mechanics
    • /
    • 제58권3호
    • /
    • pp.555-576
    • /
    • 2016
  • In this paper an efficient approach is introduced for design and analysis of double-layer grids including both geometrical and material nonlinearities, while the results are compared with those considering material nonlinearity. Optimum design procedure based on Enhanced Colliding Bodies Optimization method (ECBO) is applied to optimal design of two commonly used configurations of double-layer grids. Two ranges of spans as small and big sizes with certain bays of equal length in two directions are considered for each type of square grids. ECBO algorithm obtains minimum weight grid through appropriate selection of tube sections available in AISC Load and Resistance Factor Design (LRFD). Strength constraints of AISC-LRFD specifications and displacement constraints are imposed on these grids.

자동 메쉬 생성을 적용한 향상된 자유 곡면의 최적 근사 전개 알고리즘 (Improved Optimal Approximated Unfolding Algorithm of a Curved Shell Plate with Automatic Mesh Generation)

  • 유철호;신종계
    • 한국CDE학회논문집
    • /
    • 제11권3호
    • /
    • pp.157-163
    • /
    • 2006
  • Surfaces of many engineering structures, especially, those of ships are commonly made out of either single- or double-curved surfaces to meet functional requirements. The first step in the fabrication process of a three-dimensional design surface is unfolding or flattening the surface, otherwise known as planar development, so that manufacturers can determine the initial flat plate which is required to form the design shape. In this paper, an algorithm for optimal approximated development of a general curved surface, including both single- and double-curved surfaces, is established by minimizing the strain energy of deformation from its planar development to the design surface. The unfolding process is formulated into a constrained nonlinear programming problem, based on the deformation theory and finite element. Constraints are subjected to the characteristics of the fabrication method. And the design surface, or the curved shell plate is subdivided by automatic mesh generation.

차체구조물의 탄소성좌굴에 관한 민감도해석과 최적설계 (Sensitivity Analysis and Optimal design for the Elasto-plastic buckling of Vehicle Structures)

  • 원종진;이종선
    • 한국생산제조학회지
    • /
    • 제7권5호
    • /
    • pp.106-112
    • /
    • 1998
  • Experience and experiments show that in many cases the buckling limit is reached at a much smaller load level than is predicted by linear buckling analysis. In this paper, it is considered linear and nonlinear of plane vehicle structure and estimates design sensitivity of the cross sectional area that is composed plane vehicle structure and performs optimal design. It compares linear vehicle structure with nonlinear vehicle structure for optima design result that is selected constraint condition of buckling load.

  • PDF

Design of an Augmented Automatic Choosing Control via Hamiltonian and GA for a class of Nonlinear Systems with Constrained Input

  • Nakamura, Masatoshi;Zhang, Tao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.76.3-76
    • /
    • 2002
  • The purpose of this paper is to present a new nonlinear feedback control called AACC (Augmented automatic choosing control) for nonlinear systems. Generally, it is easy to design the optimal control laws for linear systems, but it is not so for nonlinear systems, though they have been studied for many years. One of most popular and practical nonlinear control laws is synthesized by applying a linearization method by Taylor expansion truncated at the first order and the linear optimal control method. This is only effective in a small region around the steady state point or in almost linear systems. Controllers based on a change of coordinates in differential geometry are effective in wider...

  • PDF

슬라이딩 모드를 이용한 견실 최적 제어기 설계 (Design of Robust, Optimal Controller using Sliding Mode)

  • 변지영;유관호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.580-583
    • /
    • 2003
  • The general time optimal control law provides the optimal solution for a minimum time control problem. But in most real systems with disturbances and model uncertainties, the time optimal control law leads to chattering effect. This chattering effect can cause the system to be unstable. Therefore, we propose a robust optimal control algorithm for the nonlinear second order systems with model uncertainty. The proposed algorithm is combined with bang-bang control and sliding mode control. Thus the proposed algorithm has two state space regions to implement to control algorithm. In each region, the appropriate linear or nonlinear feedback control law is used satisfying the dynamic system equations. Simulation results show the superiority of the proposed controller in comparison with pure time optimal control(bang-bang control).

  • PDF

임의의 주파수 특성을 갖는 표면음파 필터의 최적 설계 (The Optimal Design of SAW Filters with Arbitrary Frequency Characteristics)

  • 박석홍;손영찬;유상대
    • 센서학회지
    • /
    • 제5권4호
    • /
    • pp.81-87
    • /
    • 1996
  • 이 논문은 임의의 주파수 특성을 갖는 표면음파 필터의 최적화 설계 방법에 관한 연구이다. 임의의 주파수 특성을 갖는 표면음파 필터를 설계하기 위하여 비제한 비선형 최적화 방법과 FFT 알고리즘을 이용한 설계 프로그램을 개발하였다. 설계의 예로서 비대칭 진폭과 비선형 위상 주파수 특성을 갖는 표면음파 TV IF 필터를 설계하였다.

  • PDF

Framwork for task based design of robot manipulators

  • Kim, Jin-Oh;Khosla, Pradeep-K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.497-502
    • /
    • 1992
  • In this paper, a new design technique called Task Based Design (TBD) is proposed to design an optimal robot manipulator for a given task. Optimal design of a manipulator is difficult because it involves implicit and highly nonlinear functions of many design variables for a complex task. TBD designs an optimal manipulator which performs a given task best, by using a framework called Progressive Design which decomposes the complexity of the task into three steps: kinematic design, planning and kinematic control. An example of TBD is presented to demonstrate the efficiency and effectiveness of our framework.

  • PDF

최적 극점 배치 기법을 이용한 비선형 시스템의 퍼지 제어기의 설계 (Fuzzy Controller Design for Nonlinear Systems Using Optimal Pole-Placement Schemes)

  • 이남수;주영훈;김광배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.510-512
    • /
    • 1999
  • In this paper, we present a method for the analysis and design of fuzzy controller for nonlinear systems. In the design procedure, we represent the dynamics of nonlinear systems using a Takagi-Sugeno fuzzy model and formulate the controller rules, which shares the same fuzzy sets with the fuzzy system, using parallel distributed compensation method. Then, after the feedback gain of each local state feedback controller is obtained using the existing optimal pole-placement scheme, we construct an overall fuzzy logic controller by blending all local state feedback controller. Finally, the effectiveness and feasibility of the proposed fuzzy-model-based controller design method has been evaluated through an inverted pendulum system.

  • PDF

2휠 구동 모바일 로봇의 정밀 위치제어 (A Precise Position Control of Mobile Robot with Two Wheels)

  • 정양근;백승학
    • 한국산업융합학회 논문집
    • /
    • 제18권2호
    • /
    • pp.67-74
    • /
    • 2015
  • Two-wheeled driying mobild robots are precise controlled in terms of linear contol methods without considering the nonlinear dynamical characteristics. However, in the high maneuvering situations such as fast turn and abrupt start and stop, such neglected terms become dominant and heavy influence the overall driving performance. This study describes the nonlinear optimal control method to take advantage of the exact nonlinear dynamics of the balancing robot. Simulation results indicate that the optimal control outperforms in the respect of transient performance and required wheel torques. A design example is suggested for the state matrix that provides design flexibility in the control. It is shown that a well-planned state matrix by reflecting the physics of a balancing robot greatly conrtibutes to the driving performance and stability.

Trajectory Planning of Satellite Formation Flying using Nonlinear Programming and Collocation

  • Lim, Hyung-Chu;Bang, Hyo-Choong
    • Journal of Astronomy and Space Sciences
    • /
    • 제25권4호
    • /
    • pp.361-374
    • /
    • 2008
  • Recently, satellite formation flying has been a topic of significant research interest in aerospace society because it provides potential benefits compared to a large spacecraft. Some techniques have been proposed to design optimal formation trajectories minimizing fuel consumption in the process of formation configuration or reconfiguration. In this study, a method is introduced to build fuel-optimal trajectories minimizing a cost function that combines the total fuel consumption of all satellites and assignment of fuel consumption rate for each satellite. This approach is based on collocation and nonlinear programming to solve constraints for collision avoidance and the final configuration. New constraints of nonlinear equality or inequality are derived for final configuration, and nonlinear inequality constraints are established for collision avoidance. The final configuration constraints are that three or more satellites should form a projected circular orbit and make an equilateral polygon in the horizontal plane. Example scenarios, including these constraints and the cost function, are simulated by the method to generate optimal trajectories for the formation configuration and reconfiguration of multiple satellites.