• Title/Summary/Keyword: Nonlinear materials

Search Result 911, Processing Time 0.045 seconds

Progresses in Nonlinear Glass Research

  • Hayden, Yuiko T.
    • Korean Journal of Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.103-107
    • /
    • 1991
  • Nonlinearity of glass had not been remarkably large among all the available nonlinear materials. However, its superiority in optical and mechanical properties has attracted much attention for the practical application. To this goal the recent interests in this field have been shifting from the understanding of nonlinear mechanisms to the improvements of nonlinear properties.

  • PDF

Finite element analysis of the structural material by the theory of continuum damage mechanics (연속체 손상역학에 따른 구조재료의 유한요소해석)

  • 김승조;김위대
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.58-67
    • /
    • 1991
  • A theory of continuum damage mechanics based on the theory of materials of type N was developed and its nonlinear finite element approximation and numerical simulation was carried out. To solve the finite elastoplasticity problems, reasonable kinematics of large deformed solids was introduced and constitutive relations based on the theory of materials of type-N were derived. These highly nonlinear equations were reduced to the incremental weak formulation and approximated by the theory of nonlinear finite element method. Two types of problems, compression moulding problem and pure bending problem, were solved for aluminum 2024.

  • PDF

Linear and Nonlinear Optical Properties of Vanadium Pentoxide Films Prepared by Pulsed-Laser Deposition

  • Cui, Liqi;Wang, Ruiteng;Wang, Weitian
    • Korean Journal of Materials Research
    • /
    • v.31 no.7
    • /
    • pp.382-385
    • /
    • 2021
  • Well-crystallized vanadium pentoxide V2O5 thin films are fabricated on MgO single crystal substrates by using pulsed-laser deposition technique. The linear optical transmission spectra are measured and found to be in a wavelength range from 300 to 800 nm; the data are used to determine the linear refractive index of the V2O5 films. The value of linear refractive index decreases with increasing wavelength, and the relationship can be well explained by Wemple's theory. The third-order nonlinear optical properties of the films are determined by a single beam z-scan method at a wavelength of 532 nm. The results show that the prepared V2O5 films exhibit a fast third-order nonlinear optical response with nonlinear absorption coefficient and nonlinear refractive index of 2.13 × 10-10 m/W and 2.07 × 10-15 cm2/kW, respectively. The real and imaginary parts of the nonlinear susceptibility are determined to be 3.03 × 10-11 esu and 1.12 × 10-11 esu, respectively. The enhancement of the nonlinear optical properties is discussed.

Organic nonlinear optic materials for intergated optics and optical teclecommunications (집적광학과 광통신을 위한 비선형광학 유기물질)

  • 윤촌섭
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1991.07a
    • /
    • pp.5-8
    • /
    • 1991
  • New nonliner organic materials have been developed for all-optical signal processing. The organic materials possess many interesting features for this purpose. Unlike inorganic molecules the delocalized $\pi$-electron distribution and intramolecular charge transfer mevhanism allows certain organic molecules to respond highly anharmonically to an external field. In the present paper the origins of nonlinear phenomena, advantages of orgnic materials and structures of organic devices will be discussed.

  • PDF

Preparation and Properties of a Complex Crystal for Nonlinear Optical Applications: Cadmium mercury Thiocyanate

  • Jiang, Minhua;Yuan, Dourong;Liu, Mingguo;Xu, Dong
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.375-398
    • /
    • 1996
  • A complex nonlinear optical crystal Cadmium Mercury Thiocyanate with size 18*18*20mm3 was grown. It possesses chemical stability below 247$^{\circ}C$, no cleavage, and high mechanical strength. Blue light second harmonic of diode laser was realized.

  • PDF

EVOLUTION OF TRANSMISSION LOSS AND STRUCTURE IN EPOXY CURING

  • Song Hyeon-Hun;Park Jong-Hui;No Geun-Ae
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.10a
    • /
    • pp.280-282
    • /
    • 1998
  • Communications, data storage or computation by manipulating the optical signals have the strong advantages over the traditional electronic circuits in regard to the data handling speed and capacity. Effective manipulation of the optical signals, however, requires materials of large nonlinear coefficients and of fast response time. Polymeric materials are one of the promising materials to meet the requirements for nonlinear optical (NLO) materials. (omitted)

  • PDF

Nonlinear Viscoelastic Analysis of Reticulated Spatial Truss Composed of Composite Materials (복합재료 그물형 공간 트러스의 점탄성적 비선형 해석)

  • Han, Sung Cheon;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.6
    • /
    • pp.661-672
    • /
    • 2001
  • The present study is concerned with the arc-length method in the investigation of the large deflection behavior of spatial structures with composite materials. This study should be able to trace the main equilibrium path by automatically varying the arc-length size of individual solution steps with the variation of the curvature of the nonlinear equilibrium path. A quasi-elastic method is used for the solution for viscoelastic analysis of the reticulated spatial structures. Elastic modulus of composite materials is defined by micro mechanical materials modeling method and nonlinear equilibrium path is traced with various load types. To demonstrate the effectiveness of the present strategies, numerical examples of reticulated spatial truss is given and compared with solutions using other methods.

  • PDF

3-Dimensional Nonlinear Analysis of Low Velocity Impact On Composite Plates (복합재료 평판의 비선형 3차원 저속 충격 해석)

  • 김승조;지국현
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.38-42
    • /
    • 2000
  • In this study, the low velocity impact behavior of the composite laminates has been described by using 3 dimensional nonlinear finite elements. To describe the geometric nonlinearity due to large deformation, the dynamic contact problem is formulated using the exterior penalty finite element method on the base of Total Lagrangian formulation. The incremental decomposition is introduced, and the converged solution is attained by Newton-Raphson Method. The Newmark's constant-acceleration time integration algorithm is used. To make verification of the finite element program developed in this study, the solution of the nonlinear static problem with occurrence of large deformation is compared with ABAQUS, and the solution of the static contact problem with indentation is compared with the Hertz solution. And, the solution of low velocity impact problem for isotropic material is verificated by comparison with that of LS-DYNA3D. Finally the contact force of impact response from the nonlinear analysis are compared with those from the linear analysis.

  • PDF

Nonlinear Aeroelastic Characteristics of Composite Wing with Flap (복합재 플랩 날개의 비선형 공력탄성학 해석)

  • Shin, Won-Ho;Bae, Jae-Sung;Lee, In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.253-256
    • /
    • 2005
  • Nonlinear aeroelastic analyses of composite wing with flap are performed considering free-play and dynamic stiffness of actuator. Doublet-Hybrid method is used for the calculation of subsonic unsteady aerodynamic forces. Free-play is modeled as an asymmetric bilinear spring and is linearized by using the describing function method. The linear and nonlinear flutter analyses show that the flutter characteristics are significantly dependent on the free-play and dynamic stiffness. From the nonlinear flutter analysis, various types of limit cycle oscillations are observed in a range of air speeds below or above the linear divergent flutter boundary.

  • PDF