• 제목/요약/키워드: Nonlinear material constant

검색결과 92건 처리시간 0.023초

Electrical Properties and Dielectric Characteristics CCT-doped Zn/Pr-based Varistors with Sintering Temperature

  • Nahm, Choon-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제10권3호
    • /
    • pp.80-84
    • /
    • 2009
  • The microstructure, voltage-current, capacitance-voltage, and dielectric characteristics of CCT doped Zn/Pr-based varistors were investigated at different sintering temperatures. As the sintering temperature increased, the average grain size increased from 4.3 to 5.1 ${\mu}m$ and the sintered density was saturated at 5.81 g $cm^{-3}$. As the sintering temperature increased, the breakdown field decreased from 7,532 to 5,882 V $cm^{-1}$ and the nonlinear coefficient decreased from 46 to 34. As the sintering temperature increased, the donor density, density of interface states, and barrier height decreased in the range of (9.06-7.24)${\times}10^{17}\;cm^{-3}$, (3.05-2.56)${\times}10^{12}\;cm^{-2}$, and 1.1-0.95 eV, respectively. The dielectric constant exhibited relatively low value in the range of 529.1-610.3, whereas the $tan{\delta}$ exhibited a high value in the range of 0.0910-0.1053.

The fiber element technique for analysis of concrete-filled steel tubes under cyclic loads

  • Golafshani, A.A.;Aval, S.B.B.;Saadeghvaziri, M.A.
    • Structural Engineering and Mechanics
    • /
    • 제14권2호
    • /
    • pp.119-133
    • /
    • 2002
  • A beam-column fiber element for the large displacement, nonlinear inelastic analysis of Concrete-Filled Steel Tubes (CFT) is implemented. The method of description is Total Lagrangian formulation. An 8 degree of freedom (DOF) element with three nodes, which has 3 DOF per end node and 2 DOF on the middle node, has been chosen. The quadratic Lagrangian shape functions for axial deformation and the quartic Hermitian shape function for the transverse deformation are used. It is assumed that the perfect bond is maintained between steel shell and concrete core. The constitutive models employed for concrete and steel are based on the results of a recent study and include the confinement and biaxial effects. The model is implemented to analyze several CFT columns under constant and non-proportional fluctuating concentric axial load and cyclic lateral load. Good agreement has been found between experimental results and theoretical analysis.

A load increment method for ductile reinforced concrete (RC) frame structures considering strain hardening effects

  • Gunhan Aksoylu, M.;Girgin, Konuralp
    • Structural Engineering and Mechanics
    • /
    • 제38권2호
    • /
    • pp.231-247
    • /
    • 2011
  • This study introduces a new load increment method for the ductile reinforced concrete (RC) frame structures by including strain-hardening effects. The proposed method is a nonlinear static analysis technique employed for RC frame structures subjected to constant gravity loads and monotonically increasing lateral loads. The material nonlinearity in RC structural elements is considered by adopting plastic hinge concept which is extended by including the strain hardening as well as interaction between bending moment and axial force. Geometric non-linearity, known as second order effect, is implemented to the method as well.

Numerical study on the performance of corrugated steel shear walls

  • Edalati, S.A.;Yadollahi, Y.;Pakar, I.;Emadi, A.;Bayat, M.
    • Wind and Structures
    • /
    • 제19권4호
    • /
    • pp.405-420
    • /
    • 2014
  • This paper examines the nonlinear behaviour of corrugated steel plate shear walls under lateral pushover load. One of the innovations in these types of walls which have used in recent years is the use of the corrugated steel shear walls rather un-stiffness plates. In the last decades many experimental studies have been done on the on the corrugated steel shear walls. A finite element analysis that includes both material and geometric nonlinearities is employed for the investigation. A comparison is made between the behaviour of steel shear walls with sinusoidal corrugated plate and trapezoidal corrugated plate. The effects of parameters such as the thickness of the corrugated plate, the corrugation depth in the corrugated plates and the corrugation length of the infill of the corrugated plates, are investigated. The results of this study have demonstrated that in the wall with constant dimensions, the trapezoidal plates have higher energy dissipation, ductility and ultimate bearing than sinusoidal waves, while decreasing the steel material consumption.

심해저용 전기 저항 용접 소구경 송유관 소재의 온도 및 변형률 속도 에 따른 유동 응력 특성 (Flow Stress Properties of Electric Resistance Welded Small-Sized Subsea Pipeline Subjected to Temperature and Strain Rate Variations)

  • 김영훈;박성주;윤성원;정준모
    • 한국해양공학회지
    • /
    • 제29권3호
    • /
    • pp.241-248
    • /
    • 2015
  • A subsea pipeline for oil/gas transportation or gas injection is subjected to extreme variations in internal pressure and temperature, which can involve a strain rate effect on the pipeline material. This paper describes the flow stress characteristics of a pipeline material called API 5L X52N PSL2, using and experimental approach. High-speed tensile tests were carried out for two metal samples taken from the base and weld parts. The target temperature was 100℃, but two other temperature levels of –20℃and 0℃ were taken into account. Three strain rates were also considered for each temperature level: quasi static, 1/s, and 10/s. Flow stress data were proposed for each temperature level according to these strain rates. The dynamic hardening behaviors of the base and weld metals appeared to be nonlinear on the log-scale strain rate axis. A very high material constant value was required for the Cowper-Symonds constitutive equation to support the experimental results.

금형두께에 대한 1차 구조해석 결과를 기반으로 한 2차 최적화 해석에 관한 연구 (A Study on the Secondary Optimization Analysis based on the Result of Primary Structure Analysis for the Die Thickness)

  • 이종배;김상현;우창기
    • 한국산학기술학회논문지
    • /
    • 제15권6호
    • /
    • pp.3448-3454
    • /
    • 2014
  • 기존의 구조해석은 탄성해석을 일반적으로 실무에서 주축으로 해왔다. 때문에 보다 정밀한 해석을 위하여 재료와 기하학적인 비선형을 고려한 해석의 필요성이 끊임없이 대두되어 왔다. 따라서 본 연구에서는 간단한 모델을 제작하여 비선형 원리를 적용한 최적화를 수행하여 기존의 구조해석의 경험자들은 누구나 용이하게 해석을 수행할 수 있는 이론과 방법을 제시하는데 있다. 본 연구에서 소개되는 모델은 금형 다이리브에 적용될 수 있도록 전단하중에 대하여 충분한 강도로 Strain, Stress가 적게 발생하게 하여, 초기에는 Strain, Stress가 크기에 맞게 형상을 재구성하고 Hyperstudy와 Abaqus 연동에 의한 비선형으로 해석하고 제품에서 허용되는 최대, 최소 Stress 범위와 최소 Strain을 갖는 조건하에서 일정한 증가치를 만들게 하였다. 실험 모델에서 Plate 두께가 40 Newton의 힘으로 주어질 때 Iteration 처리로 금형 두께에 따른 Stress와 Strain에 대한 금형두께에 적용하고자 했을 때 7~8mm 두께가 최적화라는 결론을 얻을 수 있었다.

SBN60 박막의 결정화 및 전기적 특성에 관한 씨앗층의 영향 (Effect of Seed-layer on the Crystallization and Electric Properties of SBN60 Thin Films)

  • 장재훈;이동근;이희영;조상희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.2
    • /
    • pp.723-727
    • /
    • 2003
  • [ $Sr_xBa_{1-x}Nb_2O_6$ ] (SBN, $0.25{\leq}x{\leq}0.75$) ceramic is a ferroelectric material with tetragonal tungsten bronze (TTB) type structure, which has a high pyroelectric coefficient and a nonlinear electro-optic coefficient value. In spite of its advantages, SBN has not been investigated well compared to other ferroelectric materials with perovskite structure. In this study, SBN thin film was manufactured by ion beam sputtering technique using the prepared SBN target in $Ar/O_2$ atmosphere. SBN30 thin film of $1000{\AA}$ was pre-deposited as a seed layer on $Pt(100)/TiO_2/SiO_2/Si$ substrate followed by SBN60 deposition up to $3000{\AA}$ in thickness. As-deposited SBN60/SBN30 layer was heat-treated at different temperatures of 650, 700, 750, and $800^{\circ}C$ in air, respectively The crystallinity and orientation behavior as well as electric properties of SBN60/SBN30 multi-layer were examined. The deposited layer was uniform and the orientation was shown primarily along (001) plane from XRD pattern. There was no difference in the crystal structure with heat-treatment temperature, but the electric properties depended on the heating temperature and was the best at $750^{\circ}C$. In electric properties of Pt/SBN60/SBN30/Pt thin film capacitor prepared, the remnant polarization (2Pr) value was $15{\mu}C/cm^2$, the coercive field (Ec) 75 kV/cm, and the dielectric constant 1075, respectively.

  • PDF

SBN60 박막의 결정화 및 전기적 특성에 관한 씨앗층의 영향 (Effect of Seed-layer on the Crystallization and Electric Properties of SBN60 Thin Films)

  • 장재훈;이동근;이희영;조상희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 제5회 영호남 학술대회 논문집
    • /
    • pp.85-88
    • /
    • 2003
  • $Sr_xBa_{1-x}Nb_2O_6$(SBN, $025{\leq}x{\leq}0.75$) ceramic is a ferroelectric material with tetragonal tungsten bronze (TTB) type structure, which has a high pyroelectric coefficient and a nonlinear electro-optic coefficient value. In spite of its advantages, SBN has not been investigated well compared to other ferroelectric materials with perovskite structure. In this study, SBN thin film was manufactured by ion beam sputtering technique using the prepared SBN target in Ar/$O_2$ atmosphere. SBN30 thin film of 500 ${\AA}$ was pre-deposited as a seed layer on Pt(l00)/$TiO_2$/$SiO_2$/Si substrate followed by SBN60 deposition up to 4500 ${\AA}$ in thickness. SBN60/SBN30 layer was deposited at different Oxygen amount of 0, 8.1, 17, and 31.8 sccm, respectively. The crystallinity and orientation behavior as well as electric properties of SBN60/SBN30 multi-layer were examined. The deposited layer was uniform and the orientation was shown primarily along (001) plane from XRD pattern. The crystal structure and the electric properties depended on the Oxygen amount, heating temperature and was the best at O2 = 8.1 seem, $750^{\circ}C$. In electric properties of Pt/SBN60/SBN30/Pt thin film capacitor prepared, the remnant polarization (2Pr) value was 13 ${\mu}C/cm^2$, the coercive field (Ec) 75 kV/cm, and the dielectric constant 1492, respectively.

  • PDF

SBN 박막의 결정화 및 전기적 특성에 관한 씨앗층 두께의 영향 (Effect of Seed-layer thickness on the Crystallization and Electric Properties of SBN Thin Films.)

  • 장재훈;이동근;이희영;조상희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.271-274
    • /
    • 2003
  • [ $Sr_xBa_{1-x}Nb_2O_6$ ] (SBN, $0.25{\leq}x{\leq}0.75$) ceramic is a ferroelectric material with tetragonal tungsten bronze (TTB) type structure, which has a high pyroelectric coefficient and a nonlinear electro-optic coefficient value. In spite of its advantages, SBN has not been investigated well compared to other ferroelectric materials with perovskite structure. In this study, SBN thin film was manufactured by ion beam sputtering technique using the prepared SBN target in $Ar/O_2$ atmosphere. SBN30 thin films of different thickness were pre-deposited as a seed layer on $Pt(100)/TiO_2/SiO_2/Si$ substrate followed by SBN60 deposition up to $4500\;{\AA}$ in thickness. As-deposited SBN60/SBN30 layer was heat-treated at different temperatures of 650, 700, 750, and $800\;^{\circ}C$ in air, respectively, The crystallinity and orientation behavior as well as electric properties of SBN60/SBN30 multi-layer were examined. The deposited layer was uniform and the orientation was shown primarily along (001) plane from XRD pattern. There was difference in the crystal structure with heat-treatment temperature, and the electric properties depended on the heating temperature and the seed-layer thickness. In electric properties of Pt/SBN60/SBN30/Pt thin film capacitor prepared, the remnant polarization (2Pr) value was $15\;{\mu}C/cm^2$, the coercive field (Ec) 65 kV/cm, and the dielectric constant 1492, respectively.

  • PDF

Thermo-mechanical analysis of reinforced concrete slab using different fire models

  • Suljevic, Samir;Medic, Senad;Hrasnica, Mustafa
    • Coupled systems mechanics
    • /
    • 제9권2호
    • /
    • pp.163-182
    • /
    • 2020
  • Coupled thermo-mechanical analysis of reinforced concrete slab at elevated temperatures from a fire accounting for nonlinear thermal parameters is carried out. The main focus of the paper is put on a one-way continuous reinforced concrete slab exposed to fire from the single (bottom) side as the most typical working condition under fire loading. Although contemporary techniques alongside the fire protection measures are in constant development, in most cases it is not possible to avoid the material deterioration particularly nearby the exposed surface from a fire. Thereby the structural fire resistance of reinforced concrete slabs is mostly influenced by a relative distance between reinforcement and the exposed surface. A parametric study with variable concrete cover ranging from 15 mm to 35 mm is performed. As the first part of a one-way coupled thermo-mechanical analysis, transient nonlinear heat transfer analysis is performed by applying the net heat flux on the exposed surface. The solution of proposed heat analysis is obtained at certain time steps of interest by α-method using the explicit Euler time-integration scheme. Spatial discretization is done by the finite element method using a 1D 2-noded truss element with the temperature nodal values as unknowns. The obtained results in terms of temperature field inside the element are compared with available numerical and experimental results. A high level of agreement can be observed, implying the proposed model capable of describing the temperature field during a fire. Accompanying thermal analysis, mechanical analysis is performed in two ways. Firstly, using the guidelines given in Eurocode 2 - Part 1-2 resulting in the fire resistance rating for the aforementioned concrete cover values. The second way is a fully numerical coupled analysis carried out in general-purpose finite element software DIANA FEA. Both approaches indicate structural fire behavior similar to those observed in large-scale fire tests.