• 제목/요약/키워드: Nonlinear magnetic bearing

검색결과 30건 처리시간 0.024초

센서의 설치 오차에 따른 자기베어링 지지 로터계의 안정도에 관한 연구 -비선형 자기력 모델에 대한 고찰- (A Stability Analysis of the Magnetic Bearing System Subject to Sensor dislocation Error -Discussion on Nonlinear Magnetic Force Model-)

  • 정재일;김종원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.799-805
    • /
    • 1996
  • In many cases, the magnetic farce model is linearized at the origin in designing the controller of a magnetic bearing system. However. this linear assumption is violated by the unmodeled nonlinear effect such as sensor dislocation and backup bearing dislocation. Therefore, a direct probe into the nonlinear magnetic force model in an active magnetic bearing system is necessary. To analyze the nonlinear magnetic force model of a magnetic bearing system, phase plot analysis which is to plot the numerical solution of the nonlinear equation in several initial points in the interested region is applied. Phase plot analysis is used to observe a nonlinear dynamic system qualitatively (not quantitatively). With this method, we can get much useful information of the nonlinear system. Among this information, a bifurcation graph that represents stability and locations of fixed points is essential. From the bifurcation graph, a stability criterion of magnetic bearing system is derived.

  • PDF

Modularized Gain Scheduled Fuzzy Logic Control with Application to Nonlinear Magnetic Bearings

  • Hong, Sung-Kyung
    • 한국지능시스템학회논문지
    • /
    • 제9권4호
    • /
    • pp.384-388
    • /
    • 1999
  • This paper describes an approach for synthesizing a modularized gain scheduled PD type fuzzy logic controller(FLC) of nonlinear magnetic bearing system where the gains of FLC are on-line adapted according to the operating point. Specifically the systematic procedure via root locus technique is carried out for the selection of the gains of FLC. Simulation results demonstrate that the proposed gain scheduled fuzzy logic controller yields not only maximization of stability boundary but also better control performance than a single operating point (without gain scheduling)fuzzy controller.

  • PDF

고이득 관측기를 이용한 자기 베어링 휠용 자기 부상 시스템의 비선형 제어 (Nonlinear Control of an Electromagnetic Levitation System Using High-gain Observers for Mmagnetic Bearing Wheels)

  • 최호림;신희섭;구민성;임종태;김용민
    • 제어로봇시스템학회논문지
    • /
    • 제15권6호
    • /
    • pp.573-580
    • /
    • 2009
  • In this paper, we develop a functional test model for magnetic bearing wheels. The functional test model is an electromagnetic levitation system that has three degree of freedom, which consists of one axial suspension from gravity and two axes gimbaling capability to small angels. A nonlinear controller with high-gain observers is proposed and the real-time experiment results show that the rotor is accurately levitated at the desired position and well-balanced, which is a suitable result for the potential use an magnetic bearing wheels. Also, the proposed scheme exhibits better performance when it is compared with the conventional PID control method.

Polytopic Quasi-LPV 모델 기반 능동자기베어링의 비선형제어기 설계 (Nonlinear Controller Design of Active Magnetic Bearing Systems Based on Polytopic Quasi-LPV Models)

  • 이동환;박진배;정현석;주영훈
    • 전기학회논문지
    • /
    • 제59권4호
    • /
    • pp.797-802
    • /
    • 2010
  • In this paper, a systematic procedure to design a nonlinear controller for nonlinear active magnetic bearing (AMB) systems is presented. To do this, we effectively convert the AMB system into a polytopic quasi-linear parameter varying (LPV) system, which is a representation of nonlinear state-space models and is described by the convex combination of a set of precisely known vertices. Unlike the existing quasi-LPV systems, the nonlinear weighting functions, which construct the polytopic quasi-LPV model of the AMB system by connecting the vertices, include not only state variables but also the input ones. This allows us to treat the input nonlinearity effectively. By means of the derived polytopic quasi-LPV model and linear matrix inequality (LMI) conditions, nonlinear controller that stabilizes the AMB system is obtained. The effectiveness of the proposed controller design methodology is finally demonstrated through numerical simulations.

Optimal Design for A Heteropolar Magnetic Bearing Considering Nonlinearities

  • Kim, Chaesil;Lee, Jaewhoan;Park, Jong-Kweon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권1호
    • /
    • pp.13-19
    • /
    • 2002
  • Although the design of magnetic bearing needs a systematic optimization due to several design variables, constraints, geometric limitations, nonlinearities, and so on, the present designs for magnetic bearings have been conducted in the linear region of the characteristics for magnetic materials by trial and error considering design constraints. This article, therefore, provides the possibility of a genetic algorithm(GA) based optimization with two dimensional nonlinear finite element magnetic field analysis for the design of a radial heteropolar magnetic bearing. The magnetic bearing design by GA based optimization makes good agreements with that by a commercial optimization software DOT using the sensitivity analysis.

비선형이 고려된 이극성 자기베어링의 최적설계 (Optimal Design for a Heteropolar Magnetic Bearing Considering Nonlinearities)

  • 김재실;이재환;박종권
    • 한국정밀공학회지
    • /
    • 제16권8호
    • /
    • pp.53-58
    • /
    • 1999
  • Although the design of magnetic bearing needs a systematic optimization du e to several design variables, constraints, geometric limitations, nonlinearities, and so on, the present for magnetic bearings have been conducted in the linear region of the characteristics for magnetic by trial and error considering design constraints. This article, therefore, provides the possibility of a genetic algorithm(GA) based optimization with two dimensional-nonlinear finite element magnetic field analysis for design of a radial heteropolar magnetic bearing. The magnetic bearing design by GA based optimization makes good agreements with that by a commercial optimization software DOT using the sensitivity analysis.

  • PDF

반복적 설계 방식을 사용한 다중입출력 자기베어링 시스템의 식별 및 제어기 성능 향상 (Iterative Control-Relevant Identification and Controller Enhancement of MIMO Magnetic Bearing Rigid Rotor)

  • 한동철;이상욱;안형준;이상호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.493-498
    • /
    • 2000
  • The magnetic bearing systems are intrinsically unstable, and need the feedback control of electromagnetic forces with measured displacements. So the controller design plays an important role in constructing high performance magnetic bearing system. In case of magnetic bearing systems, the order of identified model is high because of unknown dynamics included in closed loop systems - such as sensor dynamics, actuator dynamics-and non-linearity of magnetic bearings itself. "Identification for control" - joint optimization of system identification and controller design- is proposed to get the limited-order model which is suited for the design of high-performance controller. We applied the joint identification/controller design scheme to MIMO rigid rotor system supported by magnetic bearings. Firs, we designed controller of a nonlinear simulation model of MIMO magnetic bearing system with this scheme and proved its feasibility. Then, we performed experiments on MIMO rigid rotor system supported by magnetic bearings, and the performance of closed-loop system is improved gradually during the iteration.

  • PDF

외란관측기에 기초한 자기베어링시스템의 제어기 설계 (Observer-based Controller Design of a Magnetic Bearing System)

  • 송상호;박영진;정성종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.470-473
    • /
    • 1995
  • There exist two critical in application of the magnetic bearing system. One is the control axis interference caused by gyroscopic effect and the other is the vibration caused by the unbalance on the rotor. To solve both problems at the same time, first, a centralized full-state feedback controller based on the LQR control theory was designed to compensate for the gyroscopic effect. Second, disturbance rejection control input based on the observer was designed to avoid the vibration causer by the unbalanced rotor. Balancing input computer accroding to LQR and output of the observer were derived in term of rotational speed. Effectiveness of the on-line balancing was verified through numerical simulation. The developed observer-based controller was also applied to the linear and nonlinear magnetic bearing systems.

  • PDF

자기베어링으로 지지된 연삭 스핀들의 런아웃 제어 (Runout Control of a Magnetically Suspended Grinding Spindle)

  • 노승국;경진호;박종권;최언돈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.1011-1015
    • /
    • 2000
  • In this paper, the case studies of reducing rotational errors is theoretically done for a grinding spindle with an active magnetic bearing system. The rotational errors acting on the magnetic bearing spindle are due to mass unbalance of rotor, runout, grinding excitation and unmodeled nonlinear dynamics of electromagnets. The adaptive feedforward method based on LMS algorithm is discussed to compensate output and input disturbances, and investigated its effectiveness by numerical simulation. The feedforward control reduced external excitation and rotational error for specified frequency. The interpolation method using impulse function for cancelling the electrical 'uncut is studied. These methods show their effectiveness for the rotational accuracy of the improving magnetic bearing spindle through some simulation results of the rotational error decreased by them.

  • PDF

불확실성을 고려한 횡축형 자기 베어링 시스템의 로버스트 제어에 관한 연구 (A Study on the Robust Control of Horizontal-Shaft Magnetic Bearing System Considering Perturbation)

  • 김창화;정병건;양주호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권1호
    • /
    • pp.92-101
    • /
    • 2010
  • 본 연구에서는 회전체를 지지하는 자기 베어링에 관하여, 2장에서는 적분형 서보계를 이용하여 횡축형 자기베어링 시스템(Horizontal-shaft Magnetic Bearing System: HMBS)에 대한 불확실성을 고려하면서 과도상태 응답개선에 대한 이론적인 고찰과 제어기설계 수식을 유도한다. 그리고 HMBS에 대해 물리 퍼래미터 변동에 대한 강인성과 외란의 영향을 저감하고 기준위치 변경에 따른 추종성을 갖도록 상태 피드백 제어기를 LMI 기법을 이용하여 설계한다. 3장에서는 설계한 제어칙을 가지고 시스템 불확실성의 변동에 대해 시간영역의 설계사양을 고려한 경우와 고려하지 않은 경우에 대하여 시뮬레이션을 행하고 실제 적용 가능성을 검토한다.