• Title/Summary/Keyword: Nonlinear least square Algorithm

Search Result 95, Processing Time 0.027 seconds

Performance Comparison of Acoustic Equalizers using Adaptive Algorithms in Shallow Water Condition (천해환경에서 적응 알고리즘을 이용한 음향 등화기의 성능 비교)

  • Chuai, Ming;Park, Kyu-Chil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.253-260
    • /
    • 2018
  • The acoustic communication channel in shallow underwater is typically shown as time-varying multipath fading channel characteristics. The received signal through channel transmission cause inter-symbol interference (ISI) owing to multiple components of different time delay and amplitude. To compensate for this, several techniques have been used, and one of them is acoustic equalizer. In this study, we used four equalizers - feed forward equalizer (FFE), decision directed equalizer (DDE), decision feedback equalizer (DFE) and combination DDE with DFE to compensate ISI. And we applied two adaptive algorithms to adjust coefficient of equalizers - normalized least mean square algorithm and recursive least square algorithm. As result, we found that it has a significant performance improvement over 6 dB on SNR in nonlinear equalizer. By combination of DFE and DDE has almost best performance in any case.

On the Behavior of the Signed Regressor Least Mean Squares Adaptation with Gaussian Inputs (가우시안 입력신호에 대한 Signed Regressor 최소 평균자승 적응 방식의 동작 특성)

  • 조성호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.7
    • /
    • pp.1028-1035
    • /
    • 1993
  • The signed regressor (SR) algorithm employs one bit quantization on the input regressor (or tap input) in such a way that the quantized input sequences become +1 or -1. The algorithm is computationally more efficient by nature than the popular least mean square (LMS) algorithm. The behavior of the SR algorithm unfortunately is heavily dependent on the characteristics of the input signal, and there are some Inputs for which the SR algorithm becomes unstable. It is known, however, that such a stability problem does not take place with the SR algorithm when the input signal is Gaussian, such as in the case of speech processing. In this paper, we explore a statistical analysis of the SR algorithm. Under the assumption that signals involved are zero-mean and Gaussian, and further employing the commonly used independence assumption, we derive a set of nonlinear evolution equations that characterizes the mean and mean-squared behavior of the SR algorithm. Experimental results that show very good agreement with our theoretical derivations are also presented.

  • PDF

Performance Analysis of Electrical MMSE Linear Equalizers in Optically Amplified OOK Systems

  • Park, Jang-Woo;Chung, Won-Zoo
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.232-236
    • /
    • 2011
  • We analyze the linear equalizers used in optically amplified on-off-keyed (OOK) systems to combat chromatic dispersion (CD) and polarization mode dispersion (PMD), and we derive the mathematical minimum mean squared error (MMSE) performance of these equalizers. Currently, the MMSE linear equalizer for optical OOK systems is obtained by simulations using adaptive approaches such as least mean squared (LMS) or constant modulus algorithm (CMA), but no theoretical studies on the optimal solutions for these equalizers have been performed. We model the optical OOK systems as square-law nonlinear channels and compute the MMSE equalizer coefficients directly from the estimated optical channel, signal power, and optical noise variance. The accuracy of the calculated MMSE equalizer coefficients and MMSE performance has been verified by simulations using adaptive algorithms.

Improvement Noise Attenuation Performance of the Active Noise Control System Using RCMAC (RCMAC를 이용한 능동소음 제어시스템의 소음저감 성능개선)

  • Han, S.I.;Yeo, D.Y.;Kim, S.H.;Lee, K.S.
    • Journal of Power System Engineering
    • /
    • v.14 no.5
    • /
    • pp.56-62
    • /
    • 2010
  • In this paper, a recurrent cerebellar modulation articulation control (RCMAC) has been developed for improvement of noise attenuation performance in active noise control system. For the narrow band noise, a filter-x least mean square (FXLMS) method has bee frequently employed as an algorithm for active noise control (ANC) and has a partial satisfactory noise attenuation performance. However, noise attenuation performance of an ANC system with FXLMS method is poor for broad band noise and nonlinear path since it has linear filtering structure. Thus, an ANC system using RCMAC is proposed to improve this problem. Some simulations in duct system using harmonic motor noise and KTX cabin noise as a noise source were executed. It is shown that satisfactory noise attenuation performance can be obtained.

Initial Equilibrium States Analysis of Cable Stayed Bridges Using Least Square Method (오차최소화기법을 적용한 사장교의 초기 평형상태 결정)

  • 조현준;박용명
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.421-428
    • /
    • 2003
  • For the initial equilibrium states of cable stayed bridges, this study presents a method to determine initial cable forces through successive iteration of the cable forces to minimize the errors between target moments or displacements and result of nonlinear analysis. Stay cables are modeled by truss elements and least square method was used to minimize the errors. In the structural characteristics of cable stayed bridges, a large axial force is introduced in the pylon and stiffening girder so fictitious section areas are assumed to determine initial cable forces accurately. To verify usefulness and validity of the proposed algorithm, some numerical analysis has been conducted and compared with the existing study.

  • PDF

The Combined Method of Structure Selection and Parameter Identification of Equations of Motion to Analyze the Model Tests of a Submerged Body (몰수체 모형 시험 해석을 위한 운동방정식의 구조 선택 및 계수 식별 결합법)

  • C.K. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.2
    • /
    • pp.20-28
    • /
    • 1998
  • To accurately predict the motion of a submergible, the nonlinear structure of dynamic model should be selected and corresponding parameters should be estimated using model test. Providing the model structure, only the values of parameters are unknown and the estimation can thus be formulated as a standard least square problem. Unfortunately, the nonlinear model structure of submersibles is rarely known a prior and method of model structure determination from measurement data of model test should be developed and included as a vital part of the estimation procedure. In this study, the well-known linear least square algorithm for the analysis of model tests and a way to measure the goodness are reviewed, and the identification algorithm based on an orthogonal decomposition method of Gram-Schmidt is extended to combine structure selection and maneuvering coefficients estimation in a very simple and efficient manner. Finally, the efficiency of this algorithm is verified by using simulation and applying to the analysis of model test of a submerged body. As a result, it was verified that this combined method might be very erective in selecting the structure of dynamic model estimating the maneuvering coefficients from measurement fiat of model test.

  • PDF

A Dynamic Neural Networks for Nonlinear Control at Complicated Road Situations (복잡한 도로 상태의 동적 비선형 제어를 위한 학습 신경망)

  • Kim, Jong-Man;Sin, Dong-Yong;Kim, Won-Sop;Kim, Sung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2949-2952
    • /
    • 2000
  • A new neural networks and learning algorithm are proposed in order to measure nonlinear heights of complexed road environments in realtime without pre-information. This new neural networks is Error Self Recurrent Neural Networks(ESRN), The structure of it is similar to recurrent neural networks: a delayed output as the input and a delayed error between the output of plant and neural networks as a bias input. In addition, we compute the desired value of hidden layer by an optimal method instead of transfering desired values by back-propagation and each weights are updated by RLS(Recursive Least Square). Consequently. this neural networks are not sensitive to initial weights and a learning rate, and have a faster convergence rate than conventional neural networks. We can estimate nonlinear models in realtime by ESRN and learning algorithm and control nonlinear models. To show the performance of this one. we control 7 degree of freedom full car model with several control method. From this simulation. this estimation and controller were proved to be effective to the measurements of nonlinear road environment systems.

  • PDF

Experimental Study of Spacecraft Pose Estimation Algorithm Using Vision-based Sensor

  • Hyun, Jeonghoon;Eun, Youngho;Park, Sang-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.263-277
    • /
    • 2018
  • This paper presents a vision-based relative pose estimation algorithm and its validation through both numerical and hardware experiments. The algorithm and the hardware system were simultaneously designed considering actual experimental conditions. Two estimation techniques were utilized to estimate relative pose; one was a nonlinear least square method for initial estimation, and the other was an extended Kalman Filter for subsequent on-line estimation. A measurement model of the vision sensor and equations of motion including nonlinear perturbations were utilized in the estimation process. Numerical simulations were performed and analyzed for both the autonomous docking and formation flying scenarios. A configuration of LED-based beacons was designed to avoid measurement singularity, and its structural information was implemented in the estimation algorithm. The proposed algorithm was verified again in the experimental environment by using the Autonomous Spacecraft Test Environment for Rendezvous In proXimity (ASTERIX) facility. Additionally, a laser distance meter was added to the estimation algorithm to improve the relative position estimation accuracy. Throughout this study, the performance required for autonomous docking could be presented by confirming the change in estimation accuracy with respect to the level of measurement error. In addition, hardware experiments confirmed the effectiveness of the suggested algorithm and its applicability to actual tasks in the real world.

The Design of Target Tracking System Using the Identification of TS Fuzzy Model (TS 퍼지 모델 동정을 이용한 표적 추적 시스템 설계)

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.1958-1960
    • /
    • 2001
  • In this paper, we propose the design methodology of target tracking system using the identification of TS fuzzy model based on genetic algorithm(GA) and RLS algorithm. In general, the objective of target tracking is to estimate the future trajectory of the target based on the past position of the target obtained from the sensor. In the conventional and mathematical nonlinear filtering method such as extended Kalman filter(EKF), the performance of the system may be deteriorated in highly nonlinear situation. In this paper, to resolve these problems of nonlinear filtering technique, the error of EKF by nonlinearity is compensated by identifying TS fuzzy model. In the proposed method, after composing training datum from the parameters of EKF, by identifying the premise and consequent parameters and the rule numbers of TS fuzzy model using GA, and by tuning finely the consequent parameters of TS fuzzy model using recursive least square(RLS) algorithm, the error of EKF is compensated. Finally, the proposed method is applied to three dimensional tracking problem, and the simulation results shows that the tracking performance is improved by the proposed method.

  • PDF

on-line Modeling of Nonlinear Process Systems using the Adaptive Fuzzy-neural Networks (적응퍼지-뉴럴네트워크를 이용한 비선형 공정의 온-라인 모델링)

  • 오성권;박병준;박춘성
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1293-1302
    • /
    • 1999
  • In this paper, an on-line process scheme is presented for implementation of a intelligent on-line modeling of nonlinear complex system. The proposed on-line process scheme is composed of FNN-based model algorithm and PLC-based simulator, Here, an adaptive fuzzy-neural networks and HCM(Hard C-Means) clustering method are used as an intelligent identification algorithm for on-line modeling. The adaptive fuzzy-neural networks consists of two distinct modifiable sturctures such as the premise and the consequence part. The parameters of two structures are adapted by a combined hybrid learning algorithm of gradient decent method and least square method. Also we design an interface S/W between PLC(Proguammable Logic Controller) and main PC computer, and construct a monitoring and control simulator for real process system. Accordingly the on-line identification algorithm and interface S/W are used to obtain the on-line FNN model structure and to accomplish the on-line modeling. And using some I/O data gathered partly in the field(plant), computer simulation is carried out to evaluate the performance of FNN model structure generated by the on-line identification algorithm. This simulation results show that the proposed technique can produce the optimal fuzzy model with higher accuracy and feasibility than other works achieved previously.

  • PDF