• 제목/요약/키워드: Nonlinear forced vibration

검색결과 78건 처리시간 0.021초

Non linear vibrations of stepped beam system under different boundary conditions

  • Ozkaya, E.;Tekin, A.
    • Structural Engineering and Mechanics
    • /
    • 제27권3호
    • /
    • pp.333-345
    • /
    • 2007
  • In this study, the nonlinear vibrations of stepped beams having different boundary conditions were investigated. The equations of motions were obtained using Hamilton's principle and made non dimensional. The stretching effect induced non-linear terms to the equations. Forcing and damping terms were also included in the equations. The dimensionless equations were solved for six different set of boundary conditions. A perturbation method was applied to the equations of motions. The first terms of the perturbation series lead to the linear problem. Natural frequencies for the linear problem were calculated exactly for different boundary conditions. Second order non-linear terms of the perturbation series behave as corrections to the linear problem. Amplitude and phase modulation equations were obtained. Non-linear free and forced vibrations were investigated in detail. The effects of the position and magnitude of the step, as well as effects of different boundary conditions on the vibrations, were determined.

전륜구동형 승용차의 엔진마운트 시스템 최적설계 (An Optimal Design of the Front Wheel Drive Engine Mount System)

  • 김민수;김한성;최동훈
    • 한국자동차공학회논문집
    • /
    • 제1권3호
    • /
    • pp.74-82
    • /
    • 1993
  • Optimal designs of a 3-point and a 4-point engine mount system are presented for reducing the idle shake of a Front Wheel Drive(FWD) vehicle. Design variables used in this study are the locations, the angles and the stiffness of an engine mount system. The goal of the optimization is minimizing the transmitted force without violating the constraints such as static weight sag, resonant frequency and side limits of design variables. The Augmented Lagrange Multiplier(ALM) Method is used for solving the nonlinear constrained optimization. The generalized Jacobi and the impedence method are employed for a free vibration analysis and a forced response analysis. The trend of analysis results well meet that of the experimental results. The optimization results reveal that the 4-point system transmits less torque than the 3-point system. It is also found from the design sensitivity analysis that the vibration characteristics of the 4-point system is less sensitive than those of the 3-point system.

  • PDF

Superharmonic vibrations of sandwich beams with viscoelastic core layer with the multiple scale method

  • Benaoum, Abdelhak;Youzera, Hadj;Abualnour, Moussa;Houari, Mohammed Sid Ahmed;Meftah, Sid Ahmed;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제80권6호
    • /
    • pp.727-736
    • /
    • 2021
  • In this work, mathematical modeling of the passive vibration controls of a three-layered sandwich beam under hard excitation is developed. Kelvin-Voigt Viscoelastic model is considered in the core. The formulation is based on the higher-order zig-zag theories where the normal and shear deformations are taken into account only in the viscoelastic core. The dynamic behaviour of the beam is represented by a complex highly nonlinear ordinary differential equation. The method of multiple scales is adopted to solve the analytical frequency-amplitude relationships in the super-harmonic resonance case. Parametric studies are carried out by using HSDT and first-order deformation theory by considering different geometric and material parameters.

정규모우드 방법을 활용한 진자형 흡진기의 비선형 동역학에 관한 연구 (On the Normal Mode Dynamics of a Pendulum Absorber)

  • 심재구;박철희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 춘계학술대회논문집; 부산수산대학교, 10 May 1996
    • /
    • pp.177-183
    • /
    • 1996
  • By utilizing the concept of normal modes, nonlinear dynamics is studied on pendulum dynamic absorber. When the spring mode loses the stability in undamped free system, a dynamic two-well potential is formed in Poincare map. A procedure is formulated to compute the forced responses associated with bifurcating mode and predict double saddle-loop phenomenon. It is found that quasiperiodic motion and stable periodic motion coexist in some parameter ranges, and only periodic motions or rotation of pendulum with chaotic fluctuation are observed in other ranges.

  • PDF

지반-구조물 상호작용계의 강성계수추정 및 비선형지진해석 (Parameter Identification and Nonlinear Seismic Analysis of Soil-Structure Interaction System)

  • 윤정방;최준성;김재민;김문수
    • 한국지진공학회논문집
    • /
    • 제1권1호
    • /
    • pp.41-49
    • /
    • 1997
  • 본 논문에서는 국제공동연구원 대형지진시험구조물의 강세진동시험결과 대한 상관해석와 지진응답해석에 관해 연구하였다. 지반-구조물 상호작용을 위해서 구조물과 근영지반은 유한요소로 모형화하고 원역지반은 무한요소로 모형화하는 직적법을 사용하였으며, 지진응답은 부분구조법에 근거한 파 입력기법을 사용하여 해석하였다. 시험후 상관해석을 통해 각 지반영역의 물성이 강제진동 시험에서 계측된 구조물 응답과 일치하도록 보정하였다. 보정된 지반물성을 초기 선형값으로 사용하고 등가선형화기법을 적용하여 지진에 관한 구조물의 응답을 예측하였다. 지반의 비선형거동을 고려하여 얻어진 구조물 응답은 계측된 결과와 매우 잘 일치한 반면, 초기 선형물성치를 사용한 응답결과는 상당한 차이를 보이고 있어서, 지반 비선형 거동의 영향이 중요함을 알 수 있었다.

  • PDF

Experimental dynamic performance of an Aluminium-MRE shallow shell

  • Zhang, Jiawei;Yildirim, Tanju;Neupane, Guru Prakash;Tao, Yuechuan;Bingnong, Jiang;Li, Weihua
    • Smart Structures and Systems
    • /
    • 제25권1호
    • /
    • pp.57-64
    • /
    • 2020
  • The nonlinear dynamics of a directly forced clamped-clamped-free-free magneto-rheological elastomer (MRE) sandwich shell has been experimentally investigated. Experiments have been conducted on an aluminium shallow shell (shell A) and an MRE-aluminium sandwich shallow shell with single curvature (shell B). An electrodynamic shaker has been used to directly force shells A and B in the vicinity of their fundamental resonance frequency; a laser displacement sensor has been used to measure the vibration amplitude to construct the frequency-response curves. It was observed that for an aluminium shell (shell A), that at small forcing amplitudes, a weak softening-type nonlinear behaviour was observed, however, at higher forcing amplitudes the nonlinear dynamical behaviour shifted and a strong hardening-type response occurred. For the MRE shell (shell B), the effect of forcing amplitude showed softening at low magnetic fields and hardening for medium magnetic fields; it was also observed the mono-curved MRE sandwich shell changed dynamics to quasiperiodic displacement at some frequencies, from a periodic displacement. The presence of a magnetic field, initial curvature, and forcing amplitude has significant qualitative and quantitative effects on the nonlinear dynamical response of a mono curved MRE sandwich shell.

면진된 유체저장탱크의 비선형 유체-구조물 상호작용 해석 (Analysis of Fluid-Structure Interactions Considering Nonlinear Free Surface Condition for Base-isolated Fluid Storage Tank)

  • 김문겸;임윤묵;조경환;정승원;어준
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.481-488
    • /
    • 2003
  • A fluid-structure-isolator interaction program was developed in this study. The behavior of liquid regions are simulated by the boundary element method, and then the technique of analyzing the free surface motion in time domain is developed by using the nonlinear free surface boundary condition(NFBC) and the condition of interface between the structure and the fluid. Structure regions are modeled by the finite element method. In order to construct the governing equation of the fluid structure interaction(FSI)problem in time domain, the finite elements for a structure and boundary elements for liquid are coupled using the equilibrium condition, the compatibility condition and NFBC. The isolator is simulated by equation proposedin 3D Basis Me. In order to verify the validity and the applicability of the developed fluid- structure -Isolator interaction program, The horizontal forced vibration analysis was performed. The applicability of the developed method is verified through the artificial seismic analysis of real size liquid storage tank.

  • PDF

The effects of temperature and porosity on resonance behavior of graphene platelet reinforced metal foams doubly-curved shells with geometric imperfection

  • Jiaqin Xu;Gui-Lin She
    • Geomechanics and Engineering
    • /
    • 제35권1호
    • /
    • pp.81-93
    • /
    • 2023
  • Due to the unclear mechanism of the influence of temperature on the resonance problem of doubly curved shells, this article aims to explore this issue. When the ambient temperature rises, the composite structure will expand. If the thermal effects are considered, the resonance response will become more complex. In the design of structure, thermal effect is inevitable. Therefore, it is of significance to study the resonant behavior of doubly curved shell structures in thermal environment. In view of this, this paper extends the previous work (She and Ding 2023) to the case of the nonlinear principal resonance behavior of graphene platelet reinforced metal foams (GPLRMFs) doubly curved shells in thermal environment. The effect of uniform temperature field is taken into consideration in the constitutive equation, and the nonlinear motion control equation considering temperature effect is derived. The modified Lindstedt Poincare (MLP) method is used to obtain the resonance response of doubly curved shells. Finally, we study the effects of temperature changes, shell types, material parameters, initial geometric imperfection and prestress on the forced vibration behaviors. It can be found that, as the temperature goes up, the resonance position can be advanced.

하이드로릭 마운트가 장착된 지지계의 고유치 해석 (Eigen-Analysis of Engine mount system with Hydraulic Mount)

  • 고강호;김영호
    • 소음진동
    • /
    • 제10권5호
    • /
    • pp.800-805
    • /
    • 2000
  • To determine the modal matrix and modal frequency of engine mount system, we most solve so-called eigen-value problem. However eigen-value problem of engine mount system with hydraulic mount can not be solved by general eigne-analysis algorithm because the properties of hydraulic mount vary with frequency. so in this paper the method for modal analysis of rigid body motions of an engine supported by hydraulic mount is proposed. Natural frequencies and mode shapes of this nonlinear system are obtained by using complex exponential method and Laplace transformation method. In time domain, impulse response functions are calculated by (two-sided) discrete inverse Fourier Transformation of forced frequency response functions achieved by Laplace transformation of the differential equation of motion. Considering the fact that frequency response functions synthesized by modal parameters form proposed method are in good agreement with original FRFs, it is proved that the proposed method is very efficient and useful for the analysis of eigne-value problem of hydraulic engine mount system.

  • PDF

A comprehensive review on the modeling of smart piezoelectric nanostructures

  • Ebrahimi, Farzad;Hosseini, S.H.S.;Singhal, Abhinav
    • Structural Engineering and Mechanics
    • /
    • 제74권5호
    • /
    • pp.611-633
    • /
    • 2020
  • In this paper, a comprehensive review of nanostructures that exhibit piezoelectric behavior on all mechanical, buckling, vibrational, thermal and electrical properties is presented. It is firstly explained vast application of materials with their piezoelectric property and also introduction of other properties. Initially, more application of material which have piezoelectric property is introduced. Zinc oxide (ZnO), boron nitride (BN) and gallium nitride (GaN) respectively, are more application of piezoelectric materials. The nonlocal elasticity theory and piezoelectric constitutive relations are demonstrated to evaluate problems and analyses. Three different approaches consisting of atomistic modeling, continuum modeling and nano-scale continuum modeling in the investigation atomistic simulation of piezoelectric nanostructures are explained. Focusing on piezoelectric behavior, investigation of analyses is performed on fields of surface and small scale effects, buckling, vibration and wave propagation. Different investigations are available in literature focusing on the synthesis, applications and mechanical behaviors of piezoelectric nanostructures. In the study of vibration behavior, researches are studied on fields of linear and nonlinear, longitudinal and transverse, free and forced vibrations. This paper is intended to provide an introduction of the development of the piezoelectric nanostructures. The key issue is a very good understanding of mechanical and electrical behaviors and characteristics of piezoelectric structures to employ in electromechanical systems.