DOI QR코드

DOI QR Code

Superharmonic vibrations of sandwich beams with viscoelastic core layer with the multiple scale method

  • Benaoum, Abdelhak (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli) ;
  • Youzera, Hadj (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli) ;
  • Abualnour, Moussa (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli) ;
  • Houari, Mohammed Sid Ahmed (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli) ;
  • Meftah, Sid Ahmed (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, Universite de DjellaliLiabes) ;
  • Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
  • Received : 2021.01.28
  • Accepted : 2021.10.22
  • Published : 2021.12.25

Abstract

In this work, mathematical modeling of the passive vibration controls of a three-layered sandwich beam under hard excitation is developed. Kelvin-Voigt Viscoelastic model is considered in the core. The formulation is based on the higher-order zig-zag theories where the normal and shear deformations are taken into account only in the viscoelastic core. The dynamic behaviour of the beam is represented by a complex highly nonlinear ordinary differential equation. The method of multiple scales is adopted to solve the analytical frequency-amplitude relationships in the super-harmonic resonance case. Parametric studies are carried out by using HSDT and first-order deformation theory by considering different geometric and material parameters.

Keywords

References

  1. Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, 24(6), 489-498. http://doi.org/10.12989/cac.2019.24.6.489.
  2. Abualnour, M., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047.
  3. Afaq, K.S., Karama, M. and Mistou, S. (2003), "Un nouveau modele raffine pour les structures multicouches'', Comptes Rendues des 13eme Journees Nationales sur les Composites, 13, 289-292.
  4. Allahkarami, F., Nikkhah-Bahrami, M. and Saryazdi, M.G. (2017), "Damping and vibration analysis of viscoelastic curved microbeam reinforced with FG-CNTs resting on viscoelastic medium using strain gradient theory and DQM", Steel Compos. Struct., 25(2), 141-155. https://doi.org/10.12989/scs.2017.25.2.141.
  5. Belarbi, M.O., Houari, M.S.A., Hirane, H., Daikh, A.A. and Bordas, S.P.A. (2021), "On the finite element analysis of functionally graded sandwich curved beams via a new refined higher order shear deformation theory", Compos. Struct., 279, 114715. https://doi.org/10.1016/j.compstruct.2021.114715.
  6. Belouettar, S., Azrar, L., Daya, E.M., Laptev, V. and Potier-Ferry, M. (2008), "Active control of nonlinear vibration of sandwich piezoelectric beams: A simplified approach", Comput. Struct., 86(3-5), 386-397. https://doi.org/10.1016/j.compstruc.2007.02.009.
  7. Bhimaraddi, A. (1995), "Sandwich beam theory and the analysis of constrained layer damping", J. Sound Vib., 179(4), 591-602. https://doi.org/10.1006/jsvi.1995.0039.
  8. Bilasse, M., Daya, E.M. and Azrar, L. (2010), "Linear and nonlinear vibrations analysis of viscoelastic sandwich beams", J. Sound Vib., 329(23), 4950-4969. https://doi.org/10.1016/j.jsv.2010.06.012.
  9. Cheraghbak, A., Dehkordi, M.B. and Golestanian, H. (2019), "Vibration analysis of sandwich beam with nanocomposite face sheets considering structural damping effects", Steel Compos. Struct., 32(6), 795-806. https://doi.org/10.12989/scs.2019.32.6.795.
  10. Civalek, O., Dastjerdi, S., Akbas, S.D. and Akgoz, B. (2021), "Vibration analysis of carbon nanotube-reinforced composite microbeams", Math. Meth. Appl. Sci., https://doi.org/10.1002/mma.7069.
  11. Cuong-Le, T., Nguyen, K.D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H. and Abdel-Wahab, M. (2021), "A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA", Compos. Struct., 259, 113216. https://doi.org/10.1016/j.compstruct.2020.113216.
  12. Cuong-Le, T., Nguyen, T.N., Vu, T.H., Khatir, S. and Wahab, M.A. (2020), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-020-01154-0.
  13. Daikh, A.A., Houari, M.S.A. and Eltaher, M.A. (2020a), "A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates", Compos. Struct., 262, 113347. https://doi.org/10.1016/j.compstruct.2020.113347.
  14. Daikh, A.A., Houari, M.S.A., Belarbi, M.O., Chakraverty, S. and Eltaher, M.A. (2021), "Analysis of axially temperature-dependent functionally graded carbon nanotube reinforced composite plates", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-021-01413-8.
  15. Daya, E.M., Azrar, L. and Potier-Ferry, M. (2004), "An amplitude equation for the non-linear vibration of viscoelastically damped sandwich beams", J. Sound Vib., 271(3-5), 789-813. https://doi.org/10.1016/S0022-460X(03)00754-5.
  16. Demir, E. (2016), "A study on natural frequencies and damping ratios of composite beams with holes", Steel Compos. Struct., 21(6), 1211-1226. https://doi.org/10.12989/scs.2016.21.6.1211.
  17. Demir, E. (2017b), "Vibration and damping behaviors of symmetric layered functional graded sandwich beams", Struct. Eng. Mech., 62(6), 771-780. https://doi.org/10.12989/sem.2017.62.6.771.
  18. Emam, S.A. and Nayfeh, A.H. (2009), "Postbuckling and free vibrations of composite beams", Compos. Struct., 88(4), 636-642. https://doi.org/10.1016/j.compstruct.2008.06.006.
  19. Garg, A., Chalak, H.D., Belarbi, M.O., Chakrabarti, A. and Houari, M.S.A. (2021), "Finite element-based free vibration analysis of power-law, exponential and sigmoidal functionally graded sandwich beams", J. Inst. Eng. (India): Ser. C, 102(5), 1167-1201. https://doi.org/10.1007/s40032-021-00740-5.
  20. Gibson, R.F. and Plunkett, R. (1977), "Dynamic stiffness and damping of fiber-reinforced composite materials", Shock Vib. Dig., 9-18. https://doi.org/10.1177/058310247700900205.
  21. Hirane, H., Belarbi, M.O., Houari, M.S.A. and Tounsi, A. (2021), "On the layerwise finite element formulation for static and free vibration analysis of functionally graded sandwich plates", Eng. Comput., 1-29. https://doi.org/10.1007/s00366-020-01250-1.
  22. Houari, M.S.A., Bessaim, A., Bernard, F., Tounsi, A. and Mahmoud, S.R. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., 28(1), 13-24. https://doi.org/10.12989/scs.2018.28.1.013.
  23. Hu, H., Belouettar, S. and Potier-Ferry, M. (2008), "Review and assessment of various theories for modeling sandwich composites", Compos. Struct., 84(3), 282-292. https://doi.org/10.1016/j.compstruct.2007.08.007.
  24. Hyer, M.W., Anderson, W.J. and Scott, R.A. (1976), "Non-linear vibrations of three-layer beams with viscoelastic cores I. Theory", J. Sound Vib., 46(1), 121-136. https://doi.org/10.1016/0022-460X(76)90822-1.
  25. Jalaei, M.H. and Civalek, O. (2019), "On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam", Int. J. Eng. Sci., 143, 14-32. https://doi.org/10.1016/j.ijengsci.2019.06.013.
  26. Kapuria, S., Dumir, P.C. and Jain, N.K. (2004), "Assessment of zigzag theory for static loading, buckling, free and forced response of composite and sandwich beams", Compos. Struct., 64(3-4), 317-327. https://doi.org/10.1016/j.compstruct.2003.08.013.
  27. Khanin, R., Cartmell, M. and Gilbert, A. (2000), "A computerised implementation of the multiple scales perturbation method using Mathematica", Compos. Struct., 76(5), 565-575. https://doi.org/10.1016/S0045-7949(99)00184-4.
  28. Kolahchi, R. (2017), "A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Technol., 66, 235-248. https://doi.org/10.1016/j.ast.2017.03.016.
  29. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A. (2017b), "Wave propagation of embedded viscoelastic FGCNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory", Int. J. Mech. Sci., 130, 534-545. https://doi.org/10.1016/j.ijmecsci.2017.06.039.
  30. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Oskouei, A.N. (2017a), "Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin Wall. Struct., 113, 162-169. https://doi.org/10.1016/j.tws.2017.01.016.
  31. Kovac Jr, E.J., Anderson, W.J. and Scott, R.A. (1971), "Forced non-linear vibrations of a damped sandwich beam", J. Sound Vib., 17(1), 25-39. https://doi.org/10.1016/0022-460X(71)90131-3.
  32. Moita, J.S., Araujo, A.L., Martins, P., Soares, C.M. and Soares, C.M. (2011), "A finite element model for the analysis of viscoelastic sandwich structures", Compos. Struct., 89(21-22), 1874-1881. https://doi.org/10.1016/j.compstruc.2011.05.008.
  33. Pagano, N.J. (1969), "Exact solutions for composite laminates in cylindrical bending", J. Compos. Mater., 3(3), 398-411. https://doi.org/10.1177/002199836900300304.
  34. Rabhi, M., Benrahou, K.H., Kaci, A., Houari, M.S.A., Bourada, F., Bousahla, A.A., ... & Tounsi, A. (2020), "A new innovative 3-unknown HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Geomech. Eng., 22(2), 119-132. https://doi.org/10.12989/gae.2020.22.2.119.
  35. Rao, D.K. (1978), "Frequency and loss factors of sandwich beams under various boundary conditions", J. Mech. Eng. Sci., 20(5), 271-282. https://doi.org/10.1243/JMES_JOUR_1978_020_047_02.
  36. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719.
  37. Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., A69-A77. https://doi.org/10.1177/002199836900300316.
  38. Rikards, R. (1993), "Finite element analysis of vibration and damping of laminated composites", Compos. Struct., 24(3), 193-204. https://doi.org/10.1016/0263-8223(93)90213-A.
  39. Sahoo, R. and Singh, B.N. (2014), "A new trigonometric zigzag theory for buckling and free vibration analysis of laminated composite and sandwich plates", Compos. Struct., 117, 316-332. https://doi.org/10.1016/j.compstruct.2014.05.002.
  40. Timoshenko, S.P. (1922), "X On the transverse vibrations of bars of uniform cross-section", London Edinburgh Dublin Philos. Mag. J. Sci., 43(253), 125-131. https://doi.org/10.1080/14786442208633855.
  41. Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.
  42. Youzera, H. and Meftah, S.A. (2017), "Nonlinear damping and forced vibration behaviour of sandwich beams with transverse normal stress", Compos. Struct., 179, 258-268. https://doi.org/10.1016/j.compstruct.2017.07.038.
  43. Youzera, H., Meftah, S.A. and Daya, E.M. (2017a), "Superharmonic resonance of cross-ply laminates by the method of multiple scales", J. Comput. Nonlin. Dyn., 12(5), 054503. https://doi.org/10.1115/1.4036914.
  44. Youzera, H., Meftah, S.A., Challamel, N. and Tounsi, A. (2012), "Nonlinear damping and forced vibration analysis of laminated composite beams", Compos. Part B: Eng., 43(3), 1147-1154. https://doi.org/10.1016/j.compositesb.2012.01.008.
  45. Zinoviev, P.A. and Ermakov, Y.N. (1994), Energy Dissipation in Composite Materials, CRC Press.