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On the Normal Mode Dynamics of a Pendulum Absorber
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ABSTRACT

By utilizing the concept of normal modes, nonlinear dynamics is studied on pendulum
dynamic absorber. When the spring mode loses the stability in undamped free system, a
dynamic two-well potential is formed in Poincaré map. A procedure is formulated to
compute the forced responses associated with bifurcating mode and predict double
saddle-loop phenomenon. It is found that quasiperiodic motion and stable periodic motion
coexist in some parameter ranges, and only periodic motions or rotation of pendulum

with chaotic fluctuation are observed in other ranges.

I. Introduction

Studies of the periodic motion at internal and
external resonances in nonlinear coupled systems
using perturbation techniques(i.e. multiple scale
method, averaging method and etc.) have been
progressed in actively.

As a representative example of these systems
One
is directly excited by a harmonic

there be a pendulum dynamic absorber.
coordinate
force while the other is excited due to internal
resonance. So it is called an autoparametric system.
Haxton and Barr[1] studied the system with
limitations on the amplitude of harmonic excitation
so that the primary response remains harmonic.

Hatwal, et al[2] investigated the forced vibration
with the two types of restoring forces on the
levels of excitations
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pendulum when a high
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applied at the internal resonance condition. Next
they found the amplitude and phase modulated
motion at the particular excitation amplitude and
applying the harmonic
balance method(HBM). Moreover, the existence

frequency conditions

of chaotic motion was observed at a large
exciting amplitudes[3,4].

A K. Bajaj, et al[5] studied the dynamics by
the use of averaging method at the resonance
condition in free and forced vibrations.

This study is investigated from the view point
of normal modes, not resonance, to apply widely
over a arbitrarily frequency ratio.

II. Basic Concept

there are
known as the
equations of motion.

Generally, some special periodic

motions, normal modes in

At a sufficiently small
system energy h, they are the linear normal

modes and continuously extended to large
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systems energy. When h is very small, normal
modes are always stable, but h is increased
beyond a critical value(say bifurcation value),
By the stability
change, a stable elliptic center (a) is replaced by
a unstable saddle (b), as depicted in Fig. 1.
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S

they may become unstable.

9% 9

(b)

Fig. 1 Poincaré maps to show the
stability changes of a periodic motion

It cab be shown that the stable and unstable
manifolds of saddle create a saddle-loop or
intersect each other because a hamiltonian
system can not have a limit set. The former
case is shown in Fig. 2(a), and in the latter
case the intersection is generically transverse as
shown in fig. 2(b) to have chaotic motion due to
Smale-Birkhoff theorem[Guckenheimer and Holmes].
In either case there exists newly born periodic

motion, i.e. bifurcation mode.

Fig. 2 The formation of a saddle-loop
and a horse-shoe map

Also in forced vibration, it is predicted by the
free vibration analysis that a quasiperiodic or
chaotic approaching the saddle-loop and stable
periodic motion coexist after the bifurcation in
This is double
saddle-loop phenomenon and cannot be found in

small damping. termed
perturbation analysis.

III. Equations of Motion

One coordinate x is excited by harmonic force.
Primary mass M and secondary mass m exhibit
translational and angular motion respectively.
Restoring force of the pendulum is entirely due
to gravity and rotational motion of m can be

occur.

K C

Fcosnat I% M

Fig. 3 The two d.o.f.
autoparametric system

The kinetic energy T and potential energy V
can be expressed in a dimensionless form

T= %q —aqlqzsqu+-%-aq2

=%Bz —acos g, w
T+V=nh

Where «
B the ratio of two linear natural frequencies of

is the mass ratio of the two bodies,

the combined system. Then the equations of
motion are written as

@ + 8%, —ag;sing, —aq, 2cos gy
+2V1—aBt q;= Fcos 2t @)

dy— gysingy +singy +285,¢;=0

w
where, q,= l,qz f,a= M+m _E;_'
VM+m V ’

V ’ 2m12w2

IV. Free Vibration

The equations of motion are written as
a1+ a1 —adpsing, —ag; cos ;=0
g»— ¢,8ingy +sing; =0

Where H(qi,qz)*H(-q1,q2) so
property cannot persists about qi.

3

that symmetry
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There exists one trivial solution g2=0. This
motion q1¥0, q=0 is the spring mode or a
mode. It is the ai-q2
configuration satisfying all the
properties of normal mode, hence called similar

straight line in

space and
normal mode. There exists pendulum mode, q:=0,
q2*0, in the linearized system but in case of
regarding the nonlinear terms it is no longer
pendulum mode. From the perturbation analysis,
it is revealed that there are other types of
periodic motions ; Nonlinear normal mode(NNM),
Elliptic orbit(EQ) and Bifurcation mode.

(1) Stability analysis of the spring mode

The stability of this normal mode is determined
due to Synge's kinematico-statical sensel[6] by
the disturbance qz2=7, then

@ (H=Acos Bt , q()=0-+5(D (4)
Substitute Eqs. (4) into Egs. (3) and linearize to

obtain
2
ﬂ+(8+26c052r)77=0 (5)
dr*
4
where, 0= —75,e=2A,2t=pt
P2 B
The stability chart is shown in Fig. 4.

Transition curve |

d=1-£+0{)

Transilion curve 2

g=-g et . 6= 1424 0(Y)

N

]

S : Stable region
U : Unstable region

(8>2)

(1<B<2)

Fig. 4 Stability chart for the spring mode

Arrowed lines indicate the increase of energy
and these cross the transition curve 1 or 2 with
the two linear natural frequencies ratio 8 of the
combined system. When the mode is stable, it is
but it is
saddle when unstable.

represented by an elliptic center,
replaced by a
saddle-loops are formed, and a stable bifurcation
mode are bomn a pitch-fork

Two

in each loop ;

bifurcation[Fig. 5). The eigenfunction corresponding
to these transition curves are written as

;T(t =c(cos-g£+%ecos-§2&)+0(ez)
(6)
8

Where ¢ is an arbitrarily chosen small constant.

-7-7—2’(t)=c Sinﬁ+lesin_3& +O(EZ)
2 2

o4

L2 (Mable)

Fig. 5 Poincaré maps of the spring mode at
before and after bifurcation
(a), (b) : =01, £=25
(c), (d) : =01, B=18

(2) Bifurcation mode

HBM can be used to calculate the bifurcation
mode. It is expected that the
bifurcating mode can be calculated by assuming
that the eigenfunction on transition curve. One

solution of

terrmn  approximation
behavior of

is enough to depict the
solution in accurately, so the
generating functions for harmonic balance may

be chosen in the form.

2, q,(H = Acos wt, qz(t)=Bcos%t
(D
1€442, q(H= Acos wt, qz(t)-——Bsin%t

To apply HBM let singz=qs, cosqz~1-g./2!
from the kinetic energy T and potential energy
V and applying Lagrange eq. then

a1+ 89— g3, — g, =0

4 8
@2~ @192 +q,=0
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Substitute Eqgs. (7) into Egs. (8) and balancing
harmonics

A(Bz—w2)+'}faw232=0

82, (%a)
B(1+%(2A—1)w2)=
A - 2)——aw232 0
1<€642, (9b)
B(l——(2A+1)w)
where, B=(

Fig. 6 is the relation of A and B about o and it
is called the backbone curves of bifurcation
mode. In some frequencies range bifurcation

mode does not exist.

Amplitude(4.8)
e
Amplitude{A8)

° 15 3 4“5 . 0 5 3 45 L]
Frequency (w) Frequency (w)

(a} (b)

Fig. 6 Backbone curves of bifurcation mode
(a) : =01, B=25, (b) : =01, B=18

V. Forced Vibration

(1) Undamped forced vibration

$1=82=0,

equations of motion are expressed as following

In undamped forced vibration, ie.

(fl+/32q1—aq"25inqz—aq'22cosqz=Fcos.Qt
L (10)
go— qisingy +sing; = (

The concept of natural forcing function is used
for the analysis of forced vibration which will
produce the same form of solution as the free
oscillations and its period is same that of forcing
function[7].

(D Stability analysis of the spring mode
To investigate the stability of the spring mode,

7 is perturbed in qz using
kinematico-statical sense.

the Synge’s

a()=—z = cos 2t a(d=0+7(H D

B
Substitute Egs. (11) into Egs. (10) and linearize to
obtain
7"+ (8+2ecos20)p=0

where, 6=é,e=—%—,'=%
The stability chart corresponding to Eq. (12) is
Fig. 4 and the stability changes at the point @&
and ® by increasing of control parameter F.
Approximated bifurcation values F and Fs can
be calculated by the transition curve eq.

(12)

2 2 2
B2 o= @00
28 (13)
_ (4—2NB 2%
182, Fg= e

@ Bifurcation mode

To find the bifurcation mode,
functions assumed as Eqgs.

the generating
(7) in which o is
replaced with £ and substitute into assumed eq.
of motion, of course it including the forcing term,
and collecting the coefficients of harmonic terms,

then the following equations derived,
A -D+ % 0B =F
A2, (14a)
B(1++@A-D2)=0
Ag--LuB=F
1€5<2, (14b)

B(1—l(2A+1)92)=0
4

If B=0, this motion is pure spring mode before

bifurcation. When the excitation frequency &2
equals to the natural frequency ratio B8 of the
combined resonance Coupled
motion occurs at B*0 and Fig. 7 is the
frequency response curves(FRC) of bifurcation
mode at F=F@ a ¢:208 and F=F® a o¢-191. When
the forcing amplitude is small, FRC almost the
same as backbone curves.

system occurs.
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Amplitude(4.B}
Amplitude{s.B)
2

. 2 E 3 E
Frequency (9) Frequency (a)

(a) (b)

Fig. 7 Frequency response curves
(a) : =01, 8=25 (b) : =01, B=18
® Numerical simulation
To observe the existence of newly bomn
periodic motion due to the stability change Eqgs.
(10) integrated by the 4th order
Runge-kutta method. The parameters are a =0.1,

B=25 and £2=2.28 when the
crosses

is numerically

spring mode
the transition curve 1. In case of
2=0.1, 8=18 and £2=194.
As expected, stable bifurcating modes observed
and the period of spring motion is a half that of
pendulum motion[Fig. 8, 9]. But as the forcing
amplitude increases quasiperiodic motion appears
instead of exact periodic motion result from

transition curve 2,

HBM. Major cause lies in the approximation of
eq. of motion in 2nd order to apply HBM.
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Timef{t) Time(t)
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(e) (d)

Fig. 8 Time responses of the undamped forced
response associated with bifurcation mode
(a), (b) : B=25, Fu=1.1
(c), (d} 1 B=1.8, Fu=1.1
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Fig. 9 Poincaré maps of the undamped forced
response associated with bifurcation mode
(a), (b) : B=25, Fu=11
(o), (d : B=18, Fu=1.1

And now displayed the representative behaviors

of the coupled motion with the forcing weight
F.(=F/Fa or Fp) after the bifurcation. Chaotic
motions including rotation of pendulum observed
through the motions as shown in Fig. 10 and 11
with the increasing of forcing amplitude F. At
B =25, energy transfer between the two motions
is little but in case of B=1.8, it is much greater
than £ =25 and showing beating type motion.
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Fig. 10 Time responses of the coupled motion
(a), (b) : B=25, Fu=1.05
(c), (d) : B=18, F,=150
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% ’ 111
(e} ()
Fig. 11 Poincaré maps of the coupled motion
(a), (b} : B=25 Fu=1.05
(c), (d) : B=18, F,=150

(2) Damped foced vibration

To apply HBM for forced responses associated
with bifurcating mode Eqgs.
following

G“1+32(11—a¢;2(12'—(14.22+2\/ 1—epBtaq
= Fcos Q¢ (15)

(2) assumed as

do— d1q2 + @2 + 2824, =0
Where ¢1 and {2 are viscous damping factors.
The solutions are assumed in the form with
the frequency ratio 8.

@1{)=Acos (R2t—¢;)

B2, (16a)

g2($) = Bcos (—'gg—E — )

a1(D=Acos (Qt—¢))

1€44¢2, (16b)

4x(f)= Bsin (<2 — 4,)
It is observed that the following two cases 8>2
and 1< 8<2 are through the same procedures.
So only the A>2 case was investigated for
forced responses.
Substitute Egs. (16a) into Egs. (15) to obtain

A{(F — 2 cos ¢, +2V 1 —at f2sin é,)

2 2

-+ ali.Q cos 2¢,=F

A{ (B —2)sing, —2/ 1 —a§ fRcos 41}
202

+-2BL- sin24,=0

2 an
B{ — i— Q%cos ¢y + Az.Q cos (¢, —d9)

+ cos ¢y + ¢ Rsin gy} =0

2
B{—%stin¢2+ A2~Q sin(é; — é7)
+sin ¢y — £202¢08 $o} =0

B=0 representing the
response written as

ql(t) = Acos (.Qt_ ¢1)

pure spring mode

(18)

F
where, A=
V(F—2 +4(1-a) (8L
2V 1—ap 82
tang; = T F_
When B=0, the solution is associated with

bifurcation mode and solved by using MATLAB
Fig. 12. Also to verify the
periodicity of responses time responses, Poincaré
map and configuration space are computed as
shown in Fig. 13. The parameters are same as
shown in Fig. 12. It is readily seen that q1 and
gz behave periodic motion.

as shown in

» :Backbone curve

—— : Frequency response curve

Amplitude{4,B}

0 15 3 45 s
Frequency(0)

Fig. 12 Frequency response curves
a=01, B=25 F=Fo u 02z £1=(210°
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Fig. 13 The forced responses of bifurcation mode
(a), (b) : time responses (c¢), (d) : Poincaré

maps (e) : configuration space
a=0.1, =25, F=F® « 022 §1=2=10"

For small damping and forcing amplitudes after
the bifurcation, two-well phenomenon was found
with the initial condition near spring mode. In
14,
quasiperiodic motion approaching the strange

Fig. It is shown that the coexistence of

attractor and stable periodic motion.

e WM man nam nse -t - . 0 1
Time(t) G
(s) (b)

Fig. 14 Two-well phenomenon
@=01, B=25, Fy=1.14, ¢{1=¢:=10"
Although it is
parameter ranges strange attractor and periodic

not shown but in some

motion will be coexist from the series of

bifurcation.

V1. Conclusion

(1) Generally in symmetric systems, saddle-loop
is formed in poincaré map after the stability
changes of normal mode. Also in the nonsymmetric
system, above phenomenon was found. Two
saddle-loops originating two-well phenomenon,
and elliptic center is each loop originating limit
cycles.

(2) It is verified by simulation that HBM is the
useful tool to calculate the bifurcation mode.
(3) The two attracting limit cycles and quasiperiodic
motions are represent the double saddle-loop
phenomena. This come from the pitch—fork
bifurcation of spring mode in the free vibration.
(4) A procedure is formulated to compute a
bifurcating mode and
responses.

its associated forced
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