• Title/Summary/Keyword: Nonlinear equations system

Search Result 804, Processing Time 0.027 seconds

Using SAS/STAT to Solve a System of Nonlinear Equations (SAS/STAT를 이용하여 비선형 방정식계의 해를 구하는 방법)

  • 남윤석;조태경;심규박
    • Journal of Korean Society for Quality Management
    • /
    • v.28 no.1
    • /
    • pp.95-104
    • /
    • 2000
  • There exist many computer algorithms to solve a system of nonlinear equations. But in case nonlinear equations are complex it is not easy to solve a system of nonlinear equations. In this paper we consider the method of using NLIN procedure in SAS/STAT to solve a system of nonlinear equations.

  • PDF

A SYSTEM OF NONLINEAR PROJECTION EQUATIONS WITH PERTURBATION IN HILBERT SPACES

  • Zhou, Li-Wen;Cho, Yeol-Je;Huang, Nan-Jing
    • East Asian mathematical journal
    • /
    • v.24 no.2
    • /
    • pp.191-199
    • /
    • 2008
  • In this paper, we introduce and studied a system of nonlinear projection equations with perturbation in Hilbert spaces. By using the fixed point theorem, we prove an existence of solution for this system of nonlinear projection equations. We construct an algorithm for approximating the solution of the system of nonlinear projection equations with perturbation and show that the iterative sequence generated by the algorithm converges to the solution of the system of nonlinear projection equations with perturbation under some suitable conditions.

  • PDF

Dynamic Analysis of Harmonically Excited Non-Linear Structure System Using Harmonic Balance Method

  • Mun, Byeong-Yeong;Gang, Beom-Su;Kim, Byeong-Su
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1507-1516
    • /
    • 2001
  • An analytical method is presented for evaluation of the steady state periodic behavior of nonlinear structural systems. This method is based on the substructure synthesis formulation and a harmonic balance procedure, which is applied to the analysis of nonlinear responses. A complex nonlinear system is divided into substructures, of which equations are approximately transformed to modal coordinates including nonlinear term under the reasonable procedure. Then, the equations are synthesized into the overall system and the nonlinear solution for the system is obtained. Based on the harmonic balance method, the proposed procedure reduces the size of large degrees-of-freedom problem in the solving nonlinear equations. Feasibility and advantages of the proposed method are illustrated using the study of the nonlinear rotating machine system as a large mechanical structure system. Results obtained are reported to be an efficient approach with respect to nonlinear response prediction when compared with other conventional methods.

  • PDF

ITERATIVE ALGORITHMS FOR A FUZZY SYSTEM OF RANDOM NONLINEAR EQUATIONS IN HILBERT SPACES

  • Salahuddin, Salahuddin
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.333-352
    • /
    • 2017
  • In this research work, by using the random resolvent operator techniques associated with random ($A_t$, ${\eta}_t$, $m_t$)-monotone operators, is to established an existence and convergence theorems for a class of fuzzy system of random nonlinear equations with fuzzy mappings in Hilbert spaces. Our results improve and generalized the corresponding results of the recent works.

ITERATIVE ALGORITHMS FOR A SYSTEM OF RANDOM NONLINEAR EQUATIONS WITH FUZZY MAPPINGS

  • Kim, Jong Kyu;Salahuddin, Salahuddin
    • East Asian mathematical journal
    • /
    • v.34 no.3
    • /
    • pp.265-285
    • /
    • 2018
  • The main purpose of this paper, by using the resolvent operator technique associated with randomly (A, ${\eta}$, m)-accretive operator is to establish an existence and convergence theorem for a class of system of random nonlinear equations with fuzzy mappings in Banach spaces. Our works are improvements and generalizations of the corresponding well-known results.

A General System of Nonlinear Functional Equations in Non-Archimedean Spaces

  • Ghaemi, Mohammad Bagher;Majani, Hamid;Gordji, Madjid Eshaghi
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.3
    • /
    • pp.419-433
    • /
    • 2013
  • In this paper, we prove the generalized Hyers-Ulam-Rassias stability for a system of functional equations, called general system of nonlinear functional equations, in non-Archimedean normed spaces and Menger probabilistic non-Archimedean normed spaces.

On asymptotic stability in nonlinear differential system

  • An, Jeong-Hyang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.3
    • /
    • pp.597-603
    • /
    • 2010
  • We obtain, in using generalized norms, some stability results for a very general system of di erential equations using the method of cone-valued Lyapunov funtions and we obtain necessary and/or sufficient conditions for the uniformly asymptotic stability of the nonlinear differential system.

Power System Equilibrium Optimization (EOPT) with a Nonlinear Interior Point Method (비선형 내점법을 이용한 전력계통 평형점 최적화 (EOPT))

  • Song, Hwa-Chang;Dosano, Jose Rodel
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.8-9
    • /
    • 2006
  • This paper presents a new methodology to calculate an optimal solution of equilibrium to power system differential algebraic equations. It employs a nonlinear interior point method for solving the optimization formulation, which includes dynamic equations representing two-axis synchronous generator models with AVR and speed governing control, algebraic equations, and steady-state nonlinear loads. Equilibrium optimization (EOPT) is useful for diverse purposes in power system analysis and control with consideration of the system frequency constraint.

  • PDF

Application Study of Nonlinear Transformation Control Theory for Link Arm System (링크 암에 대한 비선형 변환 제어 이론의 응용 연구)

  • Baek, Y.S.;Yang, C.I.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.94-101
    • /
    • 1996
  • The equations of motion for a basic industrial robotic system which has a rigid or a flexible arm are derived by Lagrange's equation, respectively. Especially, for the deflection of the flexible arm, the assumed mode method is employed. These equations are highly nonlinear equations with nonlinear coupling between the variables of motion. In order to design the control law for the rigid-arm robot, Hunt-Su's nonlinear transformation method and Marino's feedback equivalence condition are used with linear quadratic regulator(LQR) theory. The control law for the rigid-arm robot is employed to input the desired path and to provide the required nonlinear transformations for the flexible-arm robot to follow. By using the implicit Euler method to solve the nonlinear equations, the comparison of the motions between the flexible and the rigid robots and the effect of flexibility are examined.

  • PDF

SOLVABILITY FOR A CLASS OF THE SYSTEMS OF THE NONLINEAR ELLIPTIC EQUATIONS

  • Jung, Tack-Sun;Choi, Q-Heung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Let ${\Omega}$ be a bounded subset of $\mathbb{R}^n$ with smooth boundary. We investigate the solvability for a class of the system of the nonlinear elliptic equations with Dirichlet boundary condition. Using the mountain pass theorem we prove that the system has at least one nontrivial solution.