• Title/Summary/Keyword: Nonlinear elasto-plastic analysis

검색결과 126건 처리시간 0.024초

등방성손상을 고려한 탄소성 대변형 무제의 유한요소해석(제2보) (Finite Element Analysis of Elasto-Plastic Large Deformation considering the Isotropic Damage(the 2nd Report))

  • 이종원
    • 한국해양공학회지
    • /
    • 제14권2호
    • /
    • pp.76-83
    • /
    • 2000
  • this paper was concentrated on the finite element formulation to solve boundary value problems by using the isotropic elasto-plastic damage constitutive model proposed previously(Noh, 2000) The plastic damage of ductile materials is generally accompanied by large plasticdeformation and strain. So nonlinearity problems induced by large deformation large rotation and large strain behaviors were dealt with using the nonlinear kinematics of elasto-plastic deformations based on the continuum mechanics. The elasto-plastic damage constitutive model was applied to the nonlinear finite element formulation process of Shin et al(1997) and an improved analysis model considering the all nonlinearities of structural behaviors is proposed. Finally to investigate the applicability and validity of the numerical model some numerial examples were considered.

  • PDF

탄성-완전-소성 보강쉘 구조물의 설계민감도해석 (Design Sensitivity Analysis of Elasto-perfectly-plastic Structure for Stiffened Shell Structure)

  • 정재준;이태희;임장근
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.746-752
    • /
    • 2001
  • Design sensitivity analysis for nonlinear structural problems has been emerged in the last decade as a glowing area of engineering research. As a result, theoretical formulations and computational algorithms have already developed for design sensitivity of nonlinear structural problems. There is not enough research for practical nonlinear problems using multi-element, due to difficulties of implementation into FEA. Therefore, nonlinear response analysis for stiffened shell which consists of Mindlin plate and Timoshenko beam, was considered. Specially, it presents the backward-Euler method which is adopted to describe an exact yield state in the stress computation procedure. Then, design sensitivity analysis of nonlinear structures, particularly elasto-perfectly-plastic structure, is developed using direct differentiation method. The accuracy of the developed sensitivity analysis was compared with the central finite difference method. Finally, on the basis of above results, design improvement for stiffened shell is suggested.

  • PDF

적층 쉘 요소를 이용한 용접 열탄소성 해석 (The Thermal Elasto-plastic Analysis Using Layered Shell Element)

  • 송하철;염재선;장창두
    • 동력기계공학회지
    • /
    • 제9권4호
    • /
    • pp.220-224
    • /
    • 2005
  • The thermal elasto-plastic analysis for the prediction of welding distortion of a 3 dimensional large-scaled ship structure is a very time-consuming work since the analysis is a nonlinear problem, and a lot of finite elements are needed to simulate the large ship hull block. Generally, 3-D finite elements have been used in the 3-D welding distortion problem to assess precisely the temperature gradient through the thickness direction of the welding plate. As a result of the adoption of 3-D element, degrees of freedom are rapidly increased in the problem to be solved. In this study, to improve the time efficiency of welding thermal elasto-plastic analysis, a layered shell element was proposed to simulate 3-D temperature gradient, and the results were compared with the experiment. The experiments were carried out for the type of bead-on-plate welding, and we found the measured data have a good agreement with the FEA results.

  • PDF

평면판의 탄소성 좌굴 특성 해석 (Analysis of Elasto-Plastic Buckling Characteristics of Plates)

  • 김문겸;김소운;황학주
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1990년도 가을 학술발표회 논문집
    • /
    • pp.16-21
    • /
    • 1990
  • Recently, the finite element method has been sucessfully extended to treat the rather couplet phenomena such as nonlinear buckling problems which are of considerable practical interest. In this study, a finite element program to evaluate the elasto-plastic buckling stress is developed. The Stowell's deformation theory for the plastic buckling of flat plates, which is in good agreement with experimental results, is used to evaluate bending stiffness matrix. A bifurcation analysis is performed to compute the elasto-plastic buckling stress. The subspace iteration method is employed to find the eigenvalues. The results are compared with corresponding enact solutions to the governing equations presented by Stowell and also with experimental data due to Pride. The developed program Is applied to obtain elastic and elasto-plastic buckling stresses for various loafing cases. The effect of different plate aspect ratio is also investigated.

  • PDF

Finite Element Analysis for Plastic Large Deformation and Anisotropic Damage

  • Nho, In-Sik;Yim, Sahng-Jun
    • Journal of Hydrospace Technology
    • /
    • 제1권1호
    • /
    • pp.111-124
    • /
    • 1995
  • An improved analysis model for material nonlinearity induced by elasto-plastic deformation and damage including a large strain response was proposed. The elasto-plastic-damage constitutive model based on the continuum damage mechanics approach was adopted to overcome limitations of the conventional plastic analysis theory. It can manage the anisotropic tonsorial damage evolved during the time-independent plastic deformation process of materials. Updated Lagrangian finite element formulation for elasto-plastic damage coupling problems including large deformation, large rotation and large strain problems was completed to develop a numerical model which can predict all kinds of structural nonlinearities and damage rationally. Finally a finite element analysis code for two-dimensional plane problems was developed and the applicability and validity of the numerical model was investigated through some numerical examples. Calculations showed reasonable results in both geometrical nonlinear problems due to large deformation and material nonlinearity including the damage effect.

  • PDF

복합재료 수소 압력용기의 탄소성 해석 (Elasto-plastic Analysis of a hydrogen pressure vessel of Composite materials)

  • 도기원;한훈희;하성규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.275-280
    • /
    • 2008
  • To improve the durability of a hydrogen pressure vessel which is applied high-pressure, it needs the autofrettage process which induces compressive residual stress in the Aluminum liner. This study presents the elasto-plastic analysis to predict the behavior of structure accurately, and the Tsai-Wu failure criterion is applied to predict failure of pressure vessel of Aluminum liner and composite materials. Generally, plastic analysis is more complex than elastic analysis and has much time to predict. To complement its weakness, the AxicomPro(EXCEL program), applied radial return algorithm and nonlinear classical laminate theory (CLT), is developed for predicting results with more simple and accurate than the existing finite element analysis programs.

  • PDF

보강된 쉘구조의 동적 비선형해석 (Dynamic Nonlinear Analysis of Stiffened Shell Structures)

  • 최명수;김문영;장승필
    • 한국지진공학회논문집
    • /
    • 제5권3호
    • /
    • pp.57-64
    • /
    • 2001
  • 보강된 판 및 쉘구조의 동적 비선형해석을 수행하기 위하여, 유한회전을 고려한 변형된 쉘유한요소를 이용하여 total Lagrangian formulation이 제시된다. 전단구속 (shear locking) 현상과 가상의 제로에너지 모우드를 동시에 제거하기 위하여 가정변형도 개념을 채용한다. 탄소성해석에서는 return mapping 미해rithm이 쉘구조의 붕괴 해석에 적용된다. Newmark 직접적분법을 사용하여 동하중 및 지진하중을 받는 쉘구조의 동적 비선형해석 결과를 제시한다.

  • PDF

쉘 구조물의 비선형 동적응답 해석을 위한 Algorithm에 관한 연구 (A Study on the Algorithm for Nonlinear Dynamic Response Analysis of Shell Structure)

  • 최찬문
    • 수산해양기술연구
    • /
    • 제32권2호
    • /
    • pp.164-176
    • /
    • 1996
  • The main intention of this paper is to develop and compare the algorithm based on finite element procedures for nonlinear transient dynamic analysis which has combined effects of material and geometric nonlinearities. Incremental equilibrium equations based on the principle of virtual work are derived by the finite element approach. For the elasto - plastic large deformation analysis of shells and the determination of the displacement-time configuration under time-varying loads, the explicit, implicit and combined explicit-implicit time integration algorithm is adopted. In the time structure is selected and the results are compared with each others. Isoparametric 8-noded quadrilateral curved elements are used for shell structure in the analysis and for geometrically nonlinear elastic behaviour, a total Lagrangian coordinate system was adopted. On the other hands, material nonlinearity is based on elasto-plastic models with Von-Mises yield criteria. Thus, the combined explicit-implicit time integration algorithm is benefit in general case of shell structure, which is the result of this paper.

  • PDF

탄소성해석을 이용한 금속 개스킷용 톱니형 코어 가공 하중 평가 (Estimation on Serrated Core Machining Load for Metal Gasket using Elasto-plastic Analysis)

  • 김태형;이성욱
    • 한국기계가공학회지
    • /
    • 제11권6호
    • /
    • pp.145-151
    • /
    • 2012
  • In this study, finite element analysis is carried out to estimate horizontal forces needed for the required power calculation and vertical forces applied on the structural analysis model for the development of automatic serrated surface at metal gasket core machining system. By considering of elasto-plastic material characteristics, nonlinear contact analysis was conducted to compute these loads according to the change of roll reduction, frictional coefficient and core thickness. As the result, horizontal and vertical reaction force variations are found according to parameters and maximum reaction force is also confirmed to be most affected by roll reduction.

탄-소성 구성모델을 이용한 사력댐의 동적거동특성 (The Seismic Performance of Rockfill Dam with Elasto-Plastic Constitutive Model)

  • 이종욱;임정열;오병현;임희대
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.91-97
    • /
    • 2002
  • Total stress analysis method and nonlinear constitutive models have been used to analyze a dynamic performance of Dams but, there is some limitation in analysis, for example, effects of build up of pore pressure and generations of permanent deformations. Therefore considering these limitations, which is mentioned before, dynamic behavior characteristics of dams and response acceleration characteristics was analyzed in time domain, applying an elasto-plastic constitutive model and effective analysis method.

  • PDF