• Title/Summary/Keyword: Nonlinear elastic model

Search Result 400, Processing Time 0.024 seconds

Comparative study between inelastic compressive buckling analysis and Eurocode 3 for rectangular steel columns under elevated temperatures

  • Seo, Jihye;Won, Deokhee;Kim, Seungjun
    • Steel and Composite Structures
    • /
    • v.43 no.3
    • /
    • pp.341-351
    • /
    • 2022
  • This paper presents an inelastic buckling behavior analysis of rectangular hollow steel tubes with geometrical imperfections under elevated temperatures. The main variables are the temperature loads, slenderness ratios, and exposure conditions at high temperatures. The material and structural properties of steels at different temperatures are based on Eurocode (EN 1993-1-2, 2005). In the elastic buckling analysis, the buckling strength decreases linearly with the exposure conditions, whereas the inelastic buckling analysis shows that the buckling strength decreases in clusters based on the exposure conditions of strong and weak axes. The buckling shape of the rectangular steel column in the elastic buckling mode, which depicts geometrical imperfection, shows a shift in the position at which bending buckling occurs when the lower section of the member is exposed to high temperatures. Furthermore, lateral torsional buckling occurs owing to cross-section deformation when the strong axial plane of the model is exposed to high temperatures. The elastic buckling analysis indicates a conservative value when the model is exposed to a relatively low temperature, whereas the inelastic buckling analysis indicates a conservative value at a certain temperature or higher. The comparative results between the inelastic buckling analysis and Eurocode 3 show that a range exists in which the buckling strength in the design equation result is overestimated at elevated temperatures, and the shapes of the buckling curves are different.

Strength Prediction of Thick Composites with Fiber Waviness under Tensile/Compressive Load Using FEA (인장/압축 하중 하에서 FEA를 이용한 굴곡진 보강섬유를 가진 두꺼운 복합재료의 강도예측에 관한 연구)

  • 류근수;전흥재
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.129-132
    • /
    • 2001
  • Fiber waviness is one of manufacturing defects encountered frequently in thick composite structures. It affects significantly on the behavior as well as strength of thick composites. The effects of fiber waviness on tensile/compressive nonlinear elastic behavior and strength of thick composite with fiber waviness are studied theoretically and experimentally. FEA(Finite Element Analysis) models are proposed to predict tensile/compressive nonlinear behavior and strength of thick composites. In the FEA models, both material and geometric nonlinearities were incorporated into the model using energy density, iterative mapping and incremental method. Also Tsai-Wu criteria was adopted to predict the strength of thick composites with fiber waviness. Tensile and compressive tests were conducted on the specimens with uniform fiber waviness. It was observed that the degree of fiber waviness in composites significantly affected the nonlinear behavior and strength of the composites

  • PDF

Nonlinear Analysis of Simply supported Elastic Beams under Parametric Excitation (계수려진을 받는 단순지지 보의 비선형 진동특성)

  • Son, In-Soo;Yabuno, Hiroshi;Yoon, Han-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.712-715
    • /
    • 2006
  • This paper presents the nonlinear characteristics of the parametric resonance of a simply supported beam which is inextensible beam. For the beam model, the order-three expanded equation of motion has been determined in a form amenable to a perturbation treatment. The equation of motion is derived by a special Cosserat theory. The method of multiple scales is used to determine the equations that describe to the first-order modulation of the amplitude of simply supported beam. The stability and the bifurcation points of the system are investigated applying the frequency response function.

  • PDF

Seismic Response Control of Nonlinear Hysteretic Structures Using Tuned Mass Damper (동조질량감쇠기를 이용한 비선형이력 구조물의 지진응답제어)

  • Lee, Sang-Hyun;Chung, Lan;Woo, Sung-Sik;Lee, Joung-Woo;Choi, Ki-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.206-209
    • /
    • 2006
  • This study presents the performance evaluation of a tuned mass damper (TMD) for controlling seismic responses of the nonlinear hysteretic structure represented by a Bouc-Wen model, considering that the general reinforce concrete building structures subject to earthquake load show nonlinear hysteretic behavior. Numerical analysis result indicates that the performance of a passive TMD of which design parameters are optimized for a elastic structure deteriorates when the hysteretic portion of the structural responses increases, while a semi-actively operated TMD shows about 15-40% more response reduction than the TMD.

  • PDF

Nonlinear Finite Element Analysis for the Precast Concrete Large Panel Subassemblage subjected to Horizontal Force (수평하중을 받는 프리캐스트 콘크리트 대형 판넬 부분구조의 비선형 해석)

  • 박병순;서수연;이원호;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.157-162
    • /
    • 1993
  • During earthquakes, the joints provide a principal means for energy dissipation, and these are also responsible for introducing a nonlinear behavior to the overall building system, while large panels remain in the elastic range. In analysis for the precast concrete large panel system, it is difficult to make a general analysis for their behavior because of differences in joint details. Therefore, in case of presence of vertical joints, it is more difficult because of the interaction between the horizontal joints and vertical joints, In this study, a nonlinear finite element analysis is performed using the gap element, friction element, and concrete material model, and the results are compared with the experimental results.

  • PDF

Transonic/Supersonic Flutter Analysis of a Fighter Wing with Tip-Store (끝단 장착물이 있는 항공기 날개의 천음속/초음속 플러터 해석)

  • Kim, Dong-Hyun;Lee, In
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1198-1203
    • /
    • 2000
  • In this study, a nonlinear aeroelastic analysis system for the fighter wing with tip-store has been developed additionally in the transonic and supersonic flow region. The unsteady CFD code based on the transonic small disturbance theory has been incorporated to consider the numerical capability for the aerodynamic nonlinear effects. The coupled time-integration method is used to observe the detailed nonlinear aeroelastic responses for elastic wings in their flight. condition. A conservative wing-box model of a fighter wing with tip-store is modeled by MSC/PATRAN and the corresponding free vibration analysis has been performed by MSC/NASTRAN. The results of flutter analyses are presented in the subsonic, transonic and supersonic flow regime.

  • PDF

Fibered Element for the Three-Dimensional Nonlinear Analysis of Prestressed Concrete Frames (PSC 뼈대의 3차원 비선형 해석을 위한 화이버 모델 요소)

  • 이재석;최규천
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.195-201
    • /
    • 2003
  • A fibered element for the material and geometric nonlinear analysis of three-dimensional reinforced and prestressed concrete frame is presented. The fibered frame element is idealized as an assemblage of concrete and reinforcing steel fibers in order to account for varied material properties within the cross section of the frame element through elastic, cracking and ultimated stages of materials. Prestressing tendon is modeled as an assemblage of multilinear prestressing steel segments each of which spans a frame element. The contribution of each prestressing steel is added directly to the fibered frame element. Numerical results from the ultimate analysis of three-dimensional PSC box girder are compared with those obtained from other investigator. The validity and the capability of the present nonlinear analysis model is well demonstrated.

  • PDF

A Study on the Hysteretic Model using Artificial Neural Network (인공신경망을 이용한 이력모델에 관한 연구)

  • 김호성;이승창;이학수;이원호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.387-394
    • /
    • 1999
  • Artificial Neural Network (ANN) is a computational model inspired by the structure and operations of the brain. It is massively parallel system consisting of a large number of highly interconnected and simple processing units. The purpose of this paper is to verify the applicability of ANN to predict experimental results through the use of measured experimental data. Although there have been accumulated data based on hysteretic characteristics of structural element with cyclic loading tests, it is difficult to directly apply them for the analysis of elastic and plastic response. Thus, simple models with mathematical formula such as Bi-Linear Model, Ramberg-Osgood Model, Degrading Tri Model, Takeda Model, Slip type Model, and etc, have been used. To verify the practicality and capability of this study, ANN is adapted to several models with mathematical formula using numerical data To show the efficiency of ANN in nonlinear analysis, it is important to determine the adequate input and output variables of hysteretic models and to minimize an error in ANN process. The application example is Beam-Column joint test using the ANN in modeling of the linear and nonlinear hysteretic behavior of structure.

  • PDF

Stress Relaxation and Nonlinear Viscoelastic Model of PAN-PVC Copolymers (PAN-PVC 공중합체의 응력완화와 비선형 점탄성 모델)

  • Kim, Nam-Jeong
    • Elastomers and Composites
    • /
    • v.45 no.4
    • /
    • pp.250-255
    • /
    • 2010
  • From the three element non-Newtonian model of one non-Newtonian viscoelastic Maxwell elements and a elastic spring, the stress relaxation equation was derived. The various model parameters of this equation were evaluated by appling the experimental results of stress relaxation to the stress relaxation equation. The theoretical curves calculated from this model parameters agreed with the experimental stress relaxation curves. From the parameters of nonlinear viscoelastic model, the hole volume, fine structure, viscoelastic properties and mechanical properties of polymer fibers were studied. The experiments of stress relaxation were carried out using the tensile tester with the solvent chamber. The stress relaxation curves of the two types polyacrylonitrile-polyvinylchloride copolymer and another two types PVC monofilament fibers were obtained in air and water of various temperatures.

The Study on Model Test of Tension Leg Platform(II) - Model Test & Analysis (심해 계류인장각 플랫폼의 모형시험 연구(II) - 모형시험 및 해석)

  • Kim, Jin-Ha;Hong, Sa-Young;Choi, Yoon-Rak;Hong, Sup;Kim, Hyun-Joe
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.69-74
    • /
    • 2000
  • Linear and nonlinear motion responses of a Tension Leg Platform(TLP) was investigated by model tests. The model tests were carried out at KRISO's Ocean Engineering Basin which has a deep pit of which diameter and depth are 5 meters and 12.5 meters, respectively. Optical sensors were used for measuring drift motions, and a set of accelerometers were employed for analyzing wave frequency motions. ISSC TLP was chosen as the model for the present study. Scale ratio was 1/65 and elastic modelling of tether system were conducted. Very good agreement was obtained between experimental results and theoretical calculations not only in linear motion responses but tension responses, nonlinear wave drift force and double frequency excitations.

  • PDF