• 제목/요약/키워드: Nonlinear deformation

검색결과 1,006건 처리시간 0.023초

축방향 왕복운동을 하는 외팔보의 복합변형변수를 이용한 비선형 모델링 및 주파수 응답특성 (Nonlinear Modeling Employing Hybrid Deformation Variables and Frequency Response Characteristics of a Cantilever Beam Undergoing Axially Oscillating Motion)

  • Kim, Na-Eun;Hyun, Sang-Hak;Yoo, Hong-Hee
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.331.2-331
    • /
    • 2002
  • A modeling method for cantilever beams undergoing axially oscillating motion is presented in this paper. Hybrid deformation variables are employed for the modeling method. Frequency response characteristics are investigated with the modeling method. It is shown that the geometric nonlinear effects of stretching and curvature play important roles to accurately predict the dynamic response. (omitted)

  • PDF

등방성손상을 고려한 탄소성 대변형 무제의 유한요소해석(제2보) (Finite Element Analysis of Elasto-Plastic Large Deformation considering the Isotropic Damage(the 2nd Report))

  • 이종원
    • 한국해양공학회지
    • /
    • 제14권2호
    • /
    • pp.76-83
    • /
    • 2000
  • this paper was concentrated on the finite element formulation to solve boundary value problems by using the isotropic elasto-plastic damage constitutive model proposed previously(Noh, 2000) The plastic damage of ductile materials is generally accompanied by large plasticdeformation and strain. So nonlinearity problems induced by large deformation large rotation and large strain behaviors were dealt with using the nonlinear kinematics of elasto-plastic deformations based on the continuum mechanics. The elasto-plastic damage constitutive model was applied to the nonlinear finite element formulation process of Shin et al(1997) and an improved analysis model considering the all nonlinearities of structural behaviors is proposed. Finally to investigate the applicability and validity of the numerical model some numerial examples were considered.

  • PDF

Large deformation bending analysis of functionally graded spherical shell using FEM

  • Kar, Vishesh Ranjan;Panda, Subrata Kumar
    • Structural Engineering and Mechanics
    • /
    • 제53권4호
    • /
    • pp.661-679
    • /
    • 2015
  • In this article, nonlinear finite element solutions of bending responses of functionally graded spherical panels are presented. The material properties of functionally graded material are graded in thickness direction according to a power-law distribution of volume fractions. A general nonlinear mathematical shallow shell model has been developed based on higher order shear deformation theory by taking the geometric nonlinearity in Green-Lagrange sense. The model is discretised using finite element steps and the governing equations are obtained through variational principle. The nonlinear responses are evaluated through a direct iterative method. The model is validated by comparing the responses with the available published literatures. The efficacy of present model has also been established by demonstrating a simulation based nonlinear model developed in ANSYS environment. The effects of power-law indices, support conditions and different geometrical parameters on bending behaviour of functionally graded shells are obtained and discussed in detail.

The new flat shell element DKMGQ-CR in linear and geometric nonlinear analysis

  • Zuohua Li;Jiafei Ning;Qingfei Shan;Hui Pan;Qitao Yang;Jun Teng
    • Computers and Concrete
    • /
    • 제31권3호
    • /
    • pp.223-239
    • /
    • 2023
  • Geometric nonlinear performance simulation and analysis of complex modern buildings and industrial products require high-performance shell elements. Balancing multiple aspects of performance in the one geometric nonlinear analysis element remains challenging. We present a new shell element, flat shell DKMGQ-CR (Co-rotational Discrete Kirchhoff-Mindlin Generalized Conforming Quadrilateral), for linear and geometric nonlinear analysis of both thick and thin shells. The DKMGQ-CR shell element was developed by combining the advantages of high-performance membrane and plate elements in a unified coordinate system and introducing the co-rotational formulation to adapt to large deformation analysis. The effectiveness of linear and geometric nonlinear analysis by DKMGQ-CR is verified through the tests of several classical numerical benchmarks. The computational results show that the proposed new element adapts to mesh distortion and effectively alleviates shear and membrane locking problems in linear and geometric nonlinear analysis. Furthermore, the DKMGQ-CR demonstrates high performance in analyzing thick and thin shells. The proposed element DKMGQ-CR is expected to provide an accurate, efficient, and convenient tool for the geometric nonlinear analysis of shells.

도로기초 지반재료의 회복변형 및 응력의존 예측 (Prediction of Resilient Deformation and Stress-Dependent Behaviors on Geomaterials in Pavement Foundation)

  • 박성완;황규영
    • 한국도로학회논문집
    • /
    • 제10권1호
    • /
    • pp.63-74
    • /
    • 2008
  • 교통하중하의 포장구조체에 대한설계나 비선형해석에 있어 도로하부재료의 회복변형특성이 활용되고 있으나 국내에서는 관련연구가 매우 미진한 실정이다. 또한 매우 제한적인 범위의 자료만이 회복탄성계수를 추정하는데 활용되고 있어 본 연구에서는 도로기초 지반재료인 보조기층과 노상토를 대상으로 비선형특성을 파악하기 위한 반복재하 회복탄성계수 시험을 실시하였다. 또한 이를 토대로 응력조건을 고려한 회복탄성계수 예측모델과 적합한 응력의존 모델을 결정하고 이를 이용하여 유한요소 해석방법을 활용하여 포장체 및 도로하부 지반재료에 대한 거동을 파악하였다.

  • PDF

대변형을 하는 고무 부품의 동적 거동 (A Dynamic Behavior of Rubber Component with Large Deformation)

  • 조재웅
    • 한국산학기술학회논문지
    • /
    • 제6권6호
    • /
    • pp.536-541
    • /
    • 2005
  • 고무 성분에 대한 대변형 및 강성은 비선형 및 대변형의 해석 결과로 나타낼 수 있다. 또한 고무는 Mooney-Rivlin의 모델로서 적용되고 고무들 사이에서 자기 접촉이 성립되어지는데 강성체 및 고무 사이에서는 마찰력이 있게 된다. 본 연구에서 사용된 비선형 시뮬레이션 해석은 여러 가지의 고무 성분들의 설계, 분석 그리고 개발에 널리 사용될 수 있다. 이러한 방법을 이용하면 새로운 고무 제품을 개발하는데 있어서 시간과 비용을 절감할 수 있을 것으로 보인다. 고무 성분들의 분석은 특이한 재료의 모델링과 비선형 유한 요소 해석을 요하는데 금속 부품들에 대하여 해석하는 프로그램들과는 완전히 다르다. 본 연구의 목적은 대변형 및 비선형의 고무 부품을 해석하는데 있다.

  • PDF

A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams

  • Bellifa, Hichem;Benrahou, Kouider Halim;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • 제62권6호
    • /
    • pp.695-702
    • /
    • 2017
  • In this work, a nonlocal zeroth-order shear deformation theory is developed for the nonlinear postbuckling behavior of nanoscale beams. The beauty of this formulation is that, in addition to including the nonlocal effect according to the nonlocal elasticity theory of Eringen, the shear deformation effect is considered in the axial displacement within the use of shear forces instead of rotational displacement like in existing shear deformation theories. The principle of virtual work together of the nonlocal differential constitutive relations of Eringen, are considered to obtain the equations of equilibrium. Closed-form solutions for the critical buckling load and the amplitude of the static nonlinear response in the postbuckling state for simply supported and clamped clamped nanoscale beams are determined.

Nonlinear vibration analysis of a nonlocal sinusoidal shear deformation carbon nanotube using differential quadrature method

  • Pour, Hasan Rahimi;Vossough, Hossein;Heydari, Mohammad Mehdi;Beygipoor, Gholamhossein;Azimzadeh, Alireza
    • Structural Engineering and Mechanics
    • /
    • 제54권6호
    • /
    • pp.1061-1073
    • /
    • 2015
  • This paper presents a nonlocal sinusoidal shear deformation beam theory (SDBT) for the nonlinear vibration of single walled carbon nanotubes (CNTs). The present model is capable of capturing both small scale effect and transverse shear deformation effects of CNTs, and does not require shear correction factors. The surrounding elastic medium is simulated based on Pasternak foundation. Based on the nonlocal differential constitutive relations of Eringen, the equations of motion of the CNTs are derived using Hamilton's principle. Differential quadrature method (DQM) for the natural frequency is presented for different boundary conditions, and the obtained results are compared with those predicted by the nonlocal Timoshenko beam theory (TBT). The effects of nonlocal parameter, boundary condition, aspect ratio on the frequency of CNTs are considered. The comparison firmly establishes that the present beam theory can accurately predict the vibration responses of CNTs.

Seismic response of single-arch large-span fabricated subway station structure

  • He, Huafei;Li, Zhaoping
    • Earthquakes and Structures
    • /
    • 제23권1호
    • /
    • pp.101-113
    • /
    • 2022
  • A new type of fabricated subway station construction technology can effectively solve these problems. For a new type of metro structure form, it is necessary to clarify its mechanical properties, especially the seismic performance. A soil-structure elastoplastic finite element model is established to perform three-dimensional nonlinear dynamic time-history analysis based on the first fabricated station structure-Yuanjiadian station of Changchun Metro Line 2, China. Firstly, the nonlinear seismic response characteristics of the fabricated and cast-in-place subway stations under different seismic wave excitations are compared and analyzed. Then, a comprehensive analysis of several important parameters that may affect the seismic response of fabricated subway stations is given. The results show that the maximum plastic strain, the interlayer deformation, and the internal force of fabricated station structures are smaller than that of cast-in-place structure, which indicates that the fabricated station structure has good deformation coordination capability and mechanical properties. The seismic responses of fabricated stations were mainly affected by the soil-structure stiffness ratio, the soil inertia effect, and earthquake load conditions rarely mentioned in cast-in-place stations. The critical parameters have little effect on the interlayer deformation but significantly affect the joints' opening distance and contact stress, which can be used as the evaluation index of the seismic performance of fabricated station structures. The presented results can better understand the seismic responses and guide the seismic design of the fabricated station.

파손역학이 조합된 이중 후방응력 이동경화 구성방정식 모델 (Combined Two-Back Stress Models with Damage Mechanics Incorporated)

  • 윤수진
    • 소성∙가공
    • /
    • 제17권3호
    • /
    • pp.161-169
    • /
    • 2008
  • In the present work, the two-back stress model is proposed and continuum damage mechanics (CDM) is incorporated into the plastic constitutive relation in order to describe the plastic deformation localization and the damage evolution in a deforming continuum body. Coupling between damage mechanics and isothermal rate independent plasticity is performed using the kinematic hardening rule, which in turn is formulated by combining the nonlinear Armstrong-Frederick rule and the Phillips rule. The numerical analyses are carried out within h deformation theory. It is noted that the damage evolution within a work piece accelerates the plastic deformation localization such that the material with lower hardening exponent results in a rapid shear band formation. Moreover, the results from the numerical analysis reflected closely with the micro-structures around the fractured regime. The effects of the various hardening parameters on deformation localization are also investigated. As the nonlinear strain rate description in the back stress evolution becomes dominant, the strain localization becomes intensified as well as the damage evolution.