• 제목/요약/키워드: Nonlinear PD and PD+ controllers

검색결과 16건 처리시간 0.024초

A nonlinear controller based on saturation functions with variable parameters to stabilize an AUV

  • Campos, E.;Monroy, J.;Abundis, H.;Chemori, A.;Creuze, V.;Torres, J.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.211-224
    • /
    • 2019
  • This paper deals with a nonlinear controller based on saturation functions with variable parameters for set-point regulation and trajectory tracking control of an Autonomous Underwater Vehicle (AUV). In many cases, saturation functions with constant parameters are used to limit the input signals generated by a classical PD (Proportional-Derivative) controller to avoid damaging the actuators; however this abrupt bounded harms the performance of the controller. We, therefore, propose to replace the conventional saturation function, with constant parameters, by a saturation function with variable parameters to limit the signals of a PD controller, which is the base of the nonlinear PD with gravitational/buoyancy compensation and the nonlinear PD + controllers that we propose in this paper. Consequently, the mathematical model is obtained, considering the featuring operation of the underwater vehicle LIRMIA 2, to do the stability analysis of the closed-loop system with the proposed nonlinear controllers using the Lyapunov arguments. The experimental results show the performance of an AUV (LIRMIA 2) for the depth control problems in the case of set-point regulation and trajectory tracking control.

Design of Fuzzy PD+I Controller Based on PID Controller

  • Oh, Sea-June;Yoo, Heui-Han;Lee, Yun-Hyung;So, Myung-Ok
    • 한국항해항만학회지
    • /
    • 제34권2호
    • /
    • pp.117-122
    • /
    • 2010
  • Since fuzzy controllers are nonlinear, it is more difficult to set the controller gains and to analyse the stability compared to conventional PID controllers. This paper proposes a fuzzy PD+I controller for tracking control which uses a linear fuzzy inference(product-sum-gravity) method based on a conventional linear PID controller. In this scheme the fuzzy PD+I controller works similar to the control performance as the linear PD plus I(PD+I) controller. Thus it is possible to analyse and design an fuzzy PD+I controller for given systems based on a linear fuzzy PD controller. The scaling factors tuning scheme, another topic of fuzzy controller design procedure, is also introduced in order to fine performance of the fuzzy PD+I controller. The scaling factors are adjusted by a real-coded genetic algorithm(RCGA) in off-line. The simulation results show the effectiveness of the proposed fuzzy PD+I controller for tracking control problems by comparing with the conventional PID controllers.

경사감소학습을 이용한 이동로봇의 적응 PD 제어 방법 (An Adaptive PD Control Method for Mobile Robots Using Gradient Descent Learning)

  • 최영규;박진현
    • 한국정보통신학회논문지
    • /
    • 제20권9호
    • /
    • pp.1679-1687
    • /
    • 2016
  • 이동로봇은 유연한 생산시스템이 필요한 산업현장에서 유용하게 사용된다. 이동로봇이 생산부품과 같은 기계적 부하를 싣고 정해진 경로를 따라 정확히 이동하여야 하며 통상 기구학적 제어기가 사용되고 있다. 그러나 부하가 매우 크고 비선형 마찰도 클 경우, 기구학적 제어기로 만족할 만한 제어성능을 기대할 수 없어서 동적 제어기가 연구되고 있다. 기존의 동적 제어기는 부하의 무게와 위치를 정확히 알아야 한다는 조건이 있다. 그러나 실제 기계적 부하는 빈번히 변하고 정확히 알 수 없으므로 기존의 동적제어기 성능에 한계가 있다. 따라서 기계적 부하를 정확히 알지 못해도 이동로봇의 동적제어가 작동하도록 경사감소학습을 이용하여 적응 PD 제어 방법을 본 논문에서 제안하였다. 여러 가지 부하 변동 조건하에서 다양하게 시뮬레이션 하여 본 논문의 적응 PD 제어 방법이 기존의 방법보다 폭넓은 수렴영역을 가지고 있음을 확인하였다.

Gain Tuning of a Fuzzy Logic Controller Superior to PD Controllers in Motor Position Control

  • Kim, Young-Real
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권3호
    • /
    • pp.188-199
    • /
    • 2014
  • Although the fuzzy logic controller is superior to the proportional integral derivative (PID) controller in motor control, the gain tuning of the fuzzy logic controller is more complicated than that of the PID controller. Using mathematical analysis of the proportional derivative (PD) and fuzzy logic controller, this study proposed a design method of a fuzzy logic controller that has the same characteristics as the PD controller in the beginning. Then a design method of a fuzzy logic controller was proposed that has superior performance to the PD controller. This fuzzy logic controller was designed by changing the envelope of the input of the of the fuzzy logic controller to nonlinear, because the fuzzy logic controller has more degree of freedom to select the control gain than the PD controller. By designing the fuzzy logic controller using the proposed method, it simplified the design of fuzzy logic controller, and it simplified the comparison of these two controllers.

PD 제어기와 신경회로망을 이용한 유도전동기의 속도제어 ((The Speed Control of Induction Motor using PD Controller and Neural Networks))

  • 양오
    • 전자공학회논문지SC
    • /
    • 제39권2호
    • /
    • pp.157-165
    • /
    • 2002
  • 본 논문에서는 PD 제어기와 신경회로망을 이용하여 3상 유도전동기의 속도제어 시스템을 구현하고자 한다. PD 제어기는 초기의 제어를 담당하며 신경회로망의 초기 학습을 담당한다. 또한, 신경회로망은 비선형 매핑능력과 학습능력이 탁월하기 때문에 제어기로 많이 사용되며 특히 전향경로 신경망은 구조가 매우 간단하기 때문에 본 논문에서는 이를 이용하여 유도전동기의 속도제어 시스템에 구현하였다. 신경회로망의 입력으로는 모터의 기준속도, 엔코더를 이용하여 측정한 모터의 실제 속도와 제어입력 전류를 이용하였고, 온라인 상태로 학습되도록 하였다. 본 논문에서 제안된 알고리즘의 타당성을 보이기 위해 기존에 널리 사용되었던 PI 제어기와 비교평가를 하였으며 시뮬레이션과 실험결과로부터 초기운전 상태에서는 PD 제어기가 주로 제어를 담당하지만 시간이 지남에 따라 신경회로망이 학습되어 신경회로망이 주 제어기가 됨을 확인하였다. 아울러, 제안된 하이브리드 제어기가 PI 제어기보다 우수하고 특히 부하변동과 같은 외란에 강인함을 알 수 있었으며, 정상상태 오차가 현저히 감소하여 정밀한 속도제어가 가능함을 확인하였다.

자율무인잠수정 이심이의 선수각 및 심도 제어기 설계와 외란 특성 분석 (Design on Yawing And Depth Controller And Analysis of Disturbance Characteristic about the AUV ISiMI)

  • 마성진;전봉환;이판묵;김상봉
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.351-354
    • /
    • 2006
  • In underwater environment, the control of AUV is difficult, because of the existence of parameter uncertainties and disturbances as well as highly nonlinear and coupled system dynamics. The requirement for the simple and robust controller which works satisfactorily in those dynamical uncertainties, call for a design using the PD or sliding mode controller. The PD controller is very popular controller in the industrial field and the sliding mode controller has been used successfully for the AUV controller design. In this paper, the two controllers arc designed for ISiMI(Integrated Submergible Intelligent Mission Implementation) AUV and the performances are compared by numerical simulation under the modeling uncertainty and disturbances. The design process of PD and sliding mode controller for ISiMI AUV and simulation results are included to compare the performances of the two controllers.

  • PDF

Reduction of Fuzzy Rules and Membership Functions and Its Application to Fuzzy PI and PD Type Controllers

  • Chopra Seema;Mitra Ranajit;Kumar Vijay
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권4호
    • /
    • pp.438-447
    • /
    • 2006
  • Fuzzy controller's design depends mainly on the rule base and membership functions over the controller's input and output ranges. This paper presents two different approaches to deal with these design issues. A simple and efficient approach; namely, Fuzzy Subtractive Clustering is used to identify the rule base needed to realize Fuzzy PI and PD type controllers. This technique provides a mechanism to obtain the reduced rule set covering the whole input/output space as well as membership functions for each input variable. But it is found that some membership functions projected from different clusters have high degree of similarity. The number of membership functions of each input variable is then reduced using a similarity measure. In this paper, the fuzzy subtractive clustering approach is shown to reduce 49 rules to 8 rules and number of membership functions to 4 and 6 for input variables (error and change in error) maintaining almost the same level of performance. Simulation on a wide range of linear and nonlinear processes is carried out and results are compared with fuzzy PI and PD type controllers without clustering in terms of several performance measures such as peak overshoot, settling time, rise time, integral absolute error (IAE) and integral-of-time multiplied absolute error (ITAE) and in each case the proposed schemes shows an identical performance.

뉴로-퍼지 제어기를 이용한 유압서보시스템의 추적제어 (A Tracking Control of the Hydraulic Servo System Using the Neuro-Fuzzy Controller)

  • 박근석;임준영;강이석
    • 제어로봇시스템학회논문지
    • /
    • 제7권6호
    • /
    • pp.509-517
    • /
    • 2001
  • To deal with non-linearities and time-varying characteristics of hydraulic systems, in this paper, the neuro-fuzzy controller has been introduced. This controller does not require and accurate mathematical model for the nonlinear factor. In order to solve general fuzzy inference problems, the input membership function and fuzzy reasoning rules are used for determining the controller parameters. These parameters are determined by using the learning algorithm. The control performance of the neuro-fuzzy controller is evaluated through a series of experiments for the various types of inputs while applying disturbances to the hydraulic system. The performance of this controller was compared with those of PID and PD controllers. From these results, We observe be said that the position tracking performance of neuro-fuzzy is better those of PID and PD controllers.

  • PDF

PD제어 기법을 적용한 어뢰형 무인잠수정(HW200)의 선수각 및 심도제어기 설계와 실해역 성능 검증 (Design and Field Test of Heading and Depth Control Based on PD Control of Torpedo Type AUV, HW200)

  • 박성국;이필엽;박상웅;권순태;정훈상;박민수
    • 제어로봇시스템학회논문지
    • /
    • 제21권10호
    • /
    • pp.951-957
    • /
    • 2015
  • This Paper considers the heading and depth control problem for an underactuated AUV (Autonomous Underwater Vehicle) HW200. The HW200 is a torpedo-type AUV that is developed from Hanwha corporation R&D Center for military operation such as MCM (Mine Counter Measures). The HW200 controls horizontal and vertical motion with two stern plane and two rudder plane. It is well known that fine control of an AUV motion is not easy because of model uncertainties, highly nonlinear and coupled motions. To overcome those kind of uncertainties, a number of control methods have been presented. In this paper, the motion controllers of the HW200 are designed using PD controller design method based on the linear and perturbed model of the typical 6-DOF equations of an AUV, and confirmed the effectiveness of the controller through simulations and field test.

압축가스 방출 유압시스템 해석 및 제어 (The Analysis and Control of Compressed Gas Discharging System)

  • 장웅락;김정관;한명철;정찬희;박인기
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.458-462
    • /
    • 2004
  • The hydraulic system for discharging compressed gas is composed of compressor tank, proportional flow control servo valve, expulsion spool valve and discharging tube. Purpose of this study is to control of expulsion spool valve. First, we analyzed the hydraulic system. The flow control servo valve is modeled as a 2nd order transfer function and friction force of the expulsion spool valve is modeled as nonlinear model with stribeck effect. However, it is difficult to include the flow reaction force in modeling. So, we exchanged from the simplified flow reaction force of the compressed gas affection into the flow analysis code written in FORTRAN code. Our simulation of the oil pressure system for discharging gas used MATLAB/Simulink. So, we realized 'Level -2 S-Function Fortran' to cooperate for MATLAB/Simulink and FORTRAN code. PD controller is selected to control in this system. Simulation results show that with given conditions the controllers give a good tracking performance.

  • PDF