• Title/Summary/Keyword: Nonlinear Mapping

Search Result 356, Processing Time 0.025 seconds

ON GENERALIZED NONLINEAR QUASI-VARIATIONAL-LIKE INCLUSIONS DEALING WITH (h,η)-PROXIMAL MAPPING

  • Liu, Zeqing;Chen, Zhengsheng;Shim, Soo-Hak;Kang, Shin-Min
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.5
    • /
    • pp.1323-1339
    • /
    • 2008
  • In this paper, a new class of $(h,{\eta})$-proximal for proper functionals in Hilbert spaces is introduced. The existence and Lip-schitz continuity of the $(h,{\eta})$-proximal mappings for proper functionals are proved. A class of generalized nonlinear quasi-variational-like inclusions in Hilbert spaces is introduced. A perturbed three-step iterative algorithm with errors for the generalized nonlinear quasi-variational-like inclusion is suggested. The existence and uniqueness theorems of solution for the generalized nonlinear quasi-variational-like inclusion are established. The convergence and stability results of iterative sequence generated by the perturbed three-step iterative algorithm with errors are discussed.

SYSTEM OF GENERALIZED NONLINEAR REGULARIZED NONCONVEX VARIATIONAL INEQUALITIES

  • Salahuddin, Salahuddin
    • Korean Journal of Mathematics
    • /
    • v.24 no.2
    • /
    • pp.181-198
    • /
    • 2016
  • In this work, we suggest a new system of generalized nonlinear regularized nonconvex variational inequalities in a real Hilbert space and establish an equivalence relation between this system and fixed point problems. By using the equivalence relation we suggest a new perturbed projection iterative algorithms with mixed errors for finding a solution set of system of generalized nonlinear regularized nonconvex variational inequalities.

ON GENERALIZED NONLINEAR QUASIVARIATIONAL INEQUALITIES

  • Li, Jin-Song;Kang, Shin-Min
    • East Asian mathematical journal
    • /
    • v.25 no.2
    • /
    • pp.141-146
    • /
    • 2009
  • In this paper, we introduce a new generalized nonlinear quasivariational inequality and establish its equivalence with a xed point problem by using the resolvent operator technique. Utilizing this equivalence, we suggest two iterative schemes, prove two existence theorems of solutions for the generalized nonlinear quasivariational inequality involving generalized cocoercive mapping and establish some convergence results of the sequences generated by the algorithms. Our results include several previously known results as special cases.

Design of a robot learning controller using associative mapping memory (연관사상 메모리를 이용한 로봇 머니퓰레이터의 학습제어기 설계)

  • 정재욱;국태용;이택종
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.936-939
    • /
    • 1996
  • In this paper, two specially designed associative mapping memories, called Associative Mapping Elements(AME) and Multiple-Digit Overlapping AME(MDO-AME), are presented for learning of nonlinear functions including kinematics and dynamics of robot manipulators. The proposed associative mapping memories consist of associative mapping rules(AMR) and weight update rules(WUR) which guarantee generalization and specialization of input-output relationship of learned nonlinear functions. Two simulation results, one for supervised learning and the other for unsupervised learning, are given to demonstrate the effectiveness of the proposed associative mapping memories.

  • PDF

FUZZY NONLINEAR RANDOM VARIATIONAL INCLUSION PROBLEMS INVOLVING ORDERED RME-MULTIVALUED MAPPING IN BANACH SPACES

  • Kim, Jong Kyu;Salahuddin, Salahuddin
    • East Asian mathematical journal
    • /
    • v.34 no.1
    • /
    • pp.47-58
    • /
    • 2018
  • In this paper, we consider a fuzzy nonlinear random variational inclusion problems involving ordered RME-multivalued mapping in ordered Banach spaces. By using the random relaxed resolvent operator and its properties, we suggest an random iterative algorithm. Finally both the existence of the random solution of the original problem and the convergence of the random iterative sequences generated by random algorithm are proved.

Color Printing Using Expanded Nonlinear Quantization and Color Gamut Mapping for Visual Color Constancy (시각적 색일치를 위한 확장된 비선형 양자화와 색역매핑을 이용한 칼라 프린팅)

  • 이채수;김경만;이철희;하영호
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1997.11a
    • /
    • pp.146-151
    • /
    • 1997
  • Recntly many devics print electronic images in a variety of ways. But the reproduced color, gamut mappung method and expanded nonlinear quantization are proposed. The color gamut mapping uses saturation mapping of HSI color space. Dithering operation for printing uses expanded nonlinear quantization which considers overlapping phenomena of neighboring printing dots. So the printed image is similar to the image of monitor and can produce high quality image in the low bit color devices.

  • PDF

GENERALIZED SET-VALVED STRONGLY NONLINEAR VARIATIONAL INEQUALITIES IN BANACH SPACES

  • Cho, Y.J.;Fang, Y.P.;Huang, N.J.;Kim, K.H.
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.195-205
    • /
    • 2003
  • In this paper, we introduce and study a new class of generalized strongly nonlinear variational inequalities with setvalued mappings. By using the KKM technique, we prove the existence and uniqueness of solution for this class of generalized setvalued strongly nonlinear variational inequalities in reflexive Banach spaces. Our results include the main results of Verma [16], [17] as special cases.

LOCAL EXISTENCE AND GLOBAL UNIQUENESS IN ONE DIMENSIONAL NONLINEAR HYPERBOLIC INVERSE PROBLEMS

  • Choi, Jong-Sung
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.4
    • /
    • pp.593-606
    • /
    • 2002
  • We prove local existence and global uniqueness in one dimensional nonlinear hyperbolic inverse problems. The basic key for showing the local existence of inverse solution is the principle of contracted mapping. As an application, we consider a hyperbolic inverse problem with damping term.

A NEW APPROACH TO EXPONENTIAL STABILITY ANALYSIS OF NONLINEAR SYSTEMS

  • WAN ANHUA
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.345-351
    • /
    • 2005
  • An effective method for analyzing the stability of nonlinear systems is developed. After introducing a novel concept named the point- wise generalized Dahlquist constant for any mapping and presenting its useful properties, we show that the point-wise generalized Dahlquist constant is sufficient for characterizing the exponential stability of nonlinear systems.

GAP FUNCTIONS AND ERROR BOUNDS FOR GENERAL SET-VALUED NONLINEAR VARIATIONAL-HEMIVARIATIONAL INEQUALITIES

  • Jong Kyu Kim;A. A. H. Ahmadini;Salahuddin
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.3
    • /
    • pp.867-883
    • /
    • 2024
  • The objective of this article is to study the general set-valued nonlinear variational-hemivariational inequalities and investigate the gap function, regularized gap function and Moreau-Yosida type regularized gap functions for the general set-valued nonlinear variational-hemivariational inequalities, and also discuss the error bounds for such inequalities using the characteristic of the Clarke generalized gradient, locally Lipschitz continuity, inverse strong monotonicity and Hausdorff Lipschitz continuous mappings.