• 제목/요약/키워드: Nonlinear Free surface Condition

검색결과 67건 처리시간 0.021초

Newton's Method to Determine Fourier Coefficients and Wave Properties for Deep Water Waves

  • JangRyong Shin
    • 한국해양공학회지
    • /
    • 제37권2호
    • /
    • pp.49-57
    • /
    • 2023
  • Since Chappelear developed a Fourier approximation method, considerable research efforts have been made. On the other hand, Fourier approximations are unsuitable for deep water waves. The purpose of this study is to provide a Fourier approximation suitable even for deep water waves and a numerical method to determine the Fourier coefficients and the wave properties. In addition, the convergence of the solution was tested in terms of its order. This paper presents a velocity potential satisfying the Laplace equation and the bottom boundary condition (BBC) with a truncated Fourier series. Two wave profiles were derived by applying the potential to the kinematic free surface boundary condition (KFSBC) and the dynamic free surface boundary condition (DFSBC). A set of nonlinear equations was represented to determine the Fourier coefficients, which were derived so that the two profiles are identical at specified phases. The set of equations was solved using Newton's method. This study proved that there is a limit to the series order, i.e., the maximum series order is N=12, and that there is a height limitation of this method which is slightly lower than the Michell theory. The reason why the other Fourier approximations are not suitable for deep water waves is discussed.

조파수로에서의 질량순환 (CIRCULATION KINEMATICS IN NONLINEAR LABOROTORY WAVES)

  • 김태인
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 1987년도 제29회 수공학연구발표회논문초록집
    • /
    • pp.223-234
    • /
    • 1987
  • A weakly nonlinear solution is presented for the two-dimensional wave kinematics forced by a generic wavemaker of variable-draft. The solution is valid for both piston and hinged wavemakers of variable-draft that may be double articulated. The second-order propagating waves generated by a planar wave board are composed of two components; viz., a Stokes second-order wave and a second-harmonic wave forced by the wavemaker which travels at a different speed. A previously neglected time-independent solution that is required to satisfy a kinematic boundary condition on the wavemaker as well as a mixed boundary condition on the free surface is included for the first time. A component of the time-independent solution is found to accurately estimate the mean return current(correct to second-order) in a closed wave flume. This mean return current is usually estimated from kinematic considerations by a conservation of mass principle.

  • PDF

고정식 진동수주형 파력 발전장치의 챔버 유동 및 파에너지 변환효율 해석 (Numerical Analysis of Chamber Flow and Wave Energy Conversion Efficiency of a Bottom-mounted Oscillating Water Column Wave Power Device)

  • 구원철;김무현;최윤락
    • 대한조선학회논문집
    • /
    • 제47권3호
    • /
    • pp.388-397
    • /
    • 2010
  • A two-dimensional time-domain, potential-theory-based fully nonlinear numerical wave tank (NWT) was developed by using boundary element method and the mixed Eulerian-Lagrangian (MEL) approach for free-surface node treatment. The NWT was applied to prediction of primary wave energy conversion efficiency of a bottom-mounted oscillating water column (OWC) wave power device. The nonlinear free-surface condition inside the chamber was specially devised to represent the pneumatic pressure due to airflow velocity and viscous energy loss at the chamber entrance due to wave column motion. The newly developed NWT technique was verified through comparison with given experimental results. The maximum energy extraction was estimated with various chamber-air duct volume ratios.

규칙파중에서의 주상체의 대진폭 운동에 관한 연구 (On Two-Dimensional Large-Amplitude Motions in Regular Wave)

  • 김용직
    • 대한조선학회지
    • /
    • 제26권2호
    • /
    • pp.25-31
    • /
    • 1989
  • 정규칙파 중에서의 이차원 주상체의 대진폭 운동이 시간영역 수치계산법에 의해 다루어졌다. 물체표면 경계조건을 각 순간의 실제 물체표면에서 적용하므로 대진폭 운동에서 고려되어야 하는 물체 위치변화 및 형상변화 등에 의한 비선형효과가 고려되고 있으며, 자유표면에서의 비선형효과는 고려되지 않는다. 단순강제동요 및 자유동요문제에 적용된 바 있는 물체 표면 소오스 분포와 자유표면 스펙트럴 표현방법이 입사파의 강제력을 포함하도록 확장 적용되었고 물체의 운동응답은 시간적분법에 의해 계산되었다. 잠수 및 부유주상체의 대진폭 운동이 시간영역에서 직접 시뮬레이션되어 비선형 효과들이 보여지고 있으며, 대진폭 운동시 파강제력에 영향을 미치는 비선형효과가 고찰되어, 물체와 유체입자의 상대운동이 수평 및 수직방향 시간평균력들에 상당한 영향을 미침이 보여지고 있다.

  • PDF

주상체의 비선형 운동(II) -전진동요문제, 파랑중의 운동- (The Nonlinear Motions of Cylinders(II) - Translating and Heaving Problem, Body Motion in Waves -)

  • 이호영;황종흘
    • 대한조선학회논문집
    • /
    • 제30권1호
    • /
    • pp.45-64
    • /
    • 1993
  • 본 논문에서는 전 논문 주상체의 비선형운동(I)[16]의 정합방법과 비선형해법을 이용한 원형실린더의 전진동요문제와 파랑중에서의 실린더의 운동에 관한 결과를 중심으로 보고한다. 완전한 물체표면 조건의 부과에 관하여 스펙트럴방법은 잠수된 경우에 적용할 수 있으나 물체가 부유된 경우에 적용이 어렵다. 그러나 본 방법은 어떤 구속없이 완전하게 적용할 수 있고 자유표면에서는 완전한 비선형 자유표면조건을 시간적분하여 추적한다 본 논문에서는 예로 첫째는 원형실린더가 수면하에서 전진하면서 상하동요하는 경우의 동유체력을 계산하여 Grue[6], Kim[12]의 선형계산과 비교하였고 또 다른 적용으로 부유된 원형주상체의 전진동요 문제를 수치적인 어려움 없이 성공적으로 수행하였다. 두번째는 파랑 중에서 주상체의 운동문제에 관한 계산을 수행하였다. 초기조건의 부과를 위해 가상적인 조파기를 설치하여 2차원 수치수조를 만든 다음 잠수된 원형 실린더를 고정시켜서 계산을 수행하여 비선형동유체력을 구하였고 다음은 2차원 실린더가 파랑중에서 운동할 때 계산을 수행했다.

  • PDF

ANALYTIC EXPRESSION OF HYDRAULIC FALL IN THE FREE SURFACE FLOW OF A TWO-LAYER FLUID OVER A BUMP

  • Park, Jeong-Whan;Hong, Bum-Il;Ha, Sung-Nam
    • 대한수학회논문집
    • /
    • 제12권2호
    • /
    • pp.479-490
    • /
    • 1997
  • We consider long nonlinear waves in the two-layer flow of an inviscid and incompressible fluid bounded above by a free surface and below by a rigid boundary. The flow is forced by a bump on the bottom. The derivation of the forced KdV equation fails when the density ratio h and the depth ratio $\rho$ yields a condition $1 + h\rho = (2-h)((1-h)^2 + 4\rho h)^{1/2}$. To overcome this difficulty we derive a forced modified KdV equation by a refined asymptotic method. Numerical solutions are given and hydraulic fall solution of a two layer fluid is expressed analytically in the case that derivation of the forced KdV (FKdV) equation fails.

  • PDF

3차원 자유표면파 문제에서의 국소유한요소법의 응용 (An Application of the Localized Finite Element Method to 3-dimensional Free Surface Wave Problems)

  • 배광준;김세은
    • 대한조선학회지
    • /
    • 제24권3호
    • /
    • pp.1-8
    • /
    • 1987
  • In this paper, the localized finite element method(LFEM) is applied to 3-dimensional ship motion problems in water of infinite depth. The LFEM used here is based on the functional constructed by Bai & Yeung(1974). To test the present numerical scheme, a few vertical axisymmetric bodies are treated by general 3-dimensional formulation. The computed results of hydrodynamic coefficients for a few vertical spheroids and vertical circular cylinders show good agreement with results obtained by others. The advantages of the present numerical method compared with the method of integral equation are as follows; (i) The cumbersome existence of irregular frequencies in the method of conventional integral equation is removed. (ii) The final matrix is banded and symmetric and the computation of the matrix elements is comparatively easier, whereas the size of the matrix in the present scheme is much larger. (iii) In the future research, it is possible to accommodate with the nonlinear exact free surface boundary condition in the localized finite element subdomain, whereas the linear solution is assumed in the truncated(far field) subdomain.

  • PDF

방해물에 기인한 이층유체의 자유 계면에서의 변화 - Hydraulic Fall (Free surface flow of a Two-Layer fluid over a bump - Hydraulic Fall)

  • 최정환
    • 한국전산유체공학회지
    • /
    • 제2권1호
    • /
    • pp.129-137
    • /
    • 1997
  • We consider long nonlinear waves in the two-layer flow of an inviscid and incompressible fluid bounded above by a free surface and below by a rigid boundary. The flow is forced by a bump on the bottom. The derivation of the forced KdV equation fails when the density ratio h and the depth ratio ρ yields a condition 1+hρ=(2-h)((1-h)²+4ρh)/sup 1/2/. To overcome this difficulty we derive a forced modified KdV equation by a refined asymptotic method. Numerical solutions are given and hydraulic fall solution of a two layer fluid is expressed analytically in the case that derivation of the forced KdV(FKdV) equaition fails.

  • PDF

디지털 수치수조 기법에 의한 연안 Tsunami의 수치 시뮬레이션 (Numerical Simulation of a Near shore Tsunami Using a Digital Wave Tank Simulation Technique)

  • 박종천;전호환
    • 한국해양공학회지
    • /
    • 제17권6호
    • /
    • pp.7-15
    • /
    • 2003
  • A Digital Wave Tank simulation technique, based on a finite-difference method and a modified marker-and-cell (MAC) algorithm, is applied in order to investigate the characteristics of nonlinear Tsunami propagations and their interactions with a 2D sloping beach, Ohkushiri Island, and to predict maximum wove run-up around the island. The Navier-Stokes (NS) and continuity equation are governed in the computational domain, and the boundary values are updated at each time step, by a finite-difference time-marching scheme in the frame of the rectangular coordinate system. The fully nonlinear, kinematic, free-surface condition is satisfied by the modified marker-density function technique. The near shore Tsunami is assumed to be a solitary wave, and is generated from the numerical wave-maker in the developed Digital Wave Tank. The simulation results are compared with the experiments and other numerical methods, based on the shallow-water wave theory.

Improved HPC method for nonlinear wave tank

  • Zhu, Wenbo;Greco, Marilena;Shao, Yanlin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권6호
    • /
    • pp.598-612
    • /
    • 2017
  • The recently developed Harmonic Polynomial Cell (HPC) method has been proved to be a promising choice for solving potential-flow Boundary Value Problem (BVP). In this paper, a flux method is proposed to consistently deal with the Neumann boundary condition of the original HPC method and enhance the accuracy. Moreover, fixed mesh algorithm with free surface immersed is developed to improve the computational efficiency. Finally, a two dimensional (2D) multi-block strategy coupling boundary-fitted mesh and fixed mesh is proposed. It limits the computational costs and preserves the accuracy. A fully nonlinear 2D numerical wave tank is developed using the improved HPC method as a verification.