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CIRCULATION KINEMATICS IN NONLINEAR LABORATORY WAVES

Tae-In Kim1 and Robert T. Hudspeth2

ABSTRACT = A "’

A weakly nonlinear solution is presented for the two—dimensional
wave kinematics forced by a generic wavemaker of variable-draft. The
solution is valid for both piston and hinged wavemakers of variable-
draft that may be double articulated. The second-order propagating
waves generated by a planar wave board are composed of two components;
viz., a Stokes second-order wave and a second-harmonic wave forced by
the wavemaker which travels at a different speed. A previously
neglected time—-independent solution that is required to satisfy a
kinematic boundary condition on the wavemaker as well as a mixed
boundary condition on the free surface is included for the first
time. A component of the time~independent solution is found to
accurately estimate the mean return current (correct to second-order)
in a closed wave flume. This mean return current is usually estimated
from kinematic considerations by a conservation of mass principle,

INTRODUCTION

Flick and Guza (1980) investigated the motion of a hinged wave-
maker that is hinged either on or below the channel bottom using a
Stokes expansion. They studied the relationship between the second-
harmonic (secondary) waves forced by the wavemaker and the Stokes
waves by computing the coefficients for the propagating eigenmode
numerically. Their solution, like that of Daugaard (1972), neglects
the interactions of the first—order evanescent eigenmodes at the free-
surface boundary near the wavemaker because these evanescent eigen—
modes do not contribute to the propagating waves. Furthermore, their
solution as well as that of Madsen (1971) and Daugaard (1972) is not
exact because they neglect the time-independent, second-order solu-
tions which are required to satisfy exactly the boundary conditions at
the wavemaker and at the free surface.

Massel (1981) attempted to extend the work of Flick and Guza
(1980) by including a time—independent solution but only for the kine~-
matic boundary condition at the wavemaker.
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A closed-torm solution is presented that is correct to second-—
order (except for the singularities at the irregular points) for the
fluid motion forced by a sinusoidally moving generic wavemaker of
variable draft. The generic wavemaker motion is doubly articulated
and includes both piston and hinged wavemakers. The previously

neglected time~independent solutions required to satisfy both the
nonlinear free surface and wavemaker boundary conditions are compared
with the Eulerian mean horizontal momentum per unit area. The mean
return current required to satisfy conservation of mass in closed wave
flumes is estimated reasonably well by the time-independent, second-
order solution for a broad class of planar wavemakers.

NONLINEAR WAVEMAKER THEORY

For convenience, all physical variables (denoted by superscript
asterisks, *) will be made dimensionless by the following:
(x,z,h,d,b,A,L) = k*(x*,z* h* d* bx A% L*); (t,T) = /g¥k*x (t*,T*);
(Hyn,8,8,x)_= (H*,n*, 8% g% y*)/a*; (u,w) = (u*,w*)/(a* /g*k*);
¢ = d%x/(a*/g*/k*); B = B*/(a*g*); and p = p*/(p*a*g*) where a* =
amplitude of the first—harmonic wave component; k*(= 2n/L*) =

= the wave
number; L* = wave length; g* = gravitational constant; p* = fluid mass

density; and T* = wave period = the period of the wavemaker
oscillation.
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Fig. 1. Definition sketch for genmeric wavemaker
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A generic wavemaker is shown in Fig. 1 which generates two-dimen-
sional, irrotational motion of an inviscid, incompressible fluid in a
semi-infinite channel of constant, still water depth, h. The fluid
motion may be obtained from a scalar velocity potential ¢(x,z,t) by

[u,w] = - Vo (1)

in which the two-dimensional gradient operator is V(o) = [3/3%, 3/3z].
The velocity potential is a solution to

V9 =0 ;x> ex(z,t) , =h < z < en(x,t) (2a)
with boundary conditions (Phillips, 1977)

3¢/az =0 ; x » ex(-h,t) , z = -h (2b)

2¢
——§+
ot

30/9x + 9x/at - €3%/6z 3x/3z =0 ; x =eyx(z,t) ; -h < z < en(t) (2d)

a¢

5z -[s %z---% ez %@-3]'§¢|2 + %%—= Osxrex(n,t),z=en(x,t) (2¢)

where B(t) = the Bernoulli constant and the parameter e = a*k* < 1.
In addition, a radiation condition is required at infinity as x + 4 =
in order to insure that propagating waves be only right progressing or
that evanescent eigenmodes be bounded. The instantaneous wavemaker
displacement from its mean position, x(z,t), is given by

x{(z,t) = E(z)[U(z+h=d)-U(z+b) ]sin w it = E(z)AU sin w t (3)

where U(+) = the Heaviside step function. The amplitude of the wave-
maker displacement, £(z), for a double-articulated piston or hinged
wavemaker of variable draft is given by the following equation for a
straight line:

£(z) = [(S/2)/(a/h)][M(1+z/h)+B' ] (W)

where M = (l-Sb/S); and B' = [A/h-M(d/h+A, /h+A/h)]; in which §/2 = the
dimensionless wavemaker stroke measured aP an arbitrary elevation
above the wave flume bottom at z = ~h+d+A,+A. A piston wavemaker is
represented by = 5; and a wavemaker of full-depth draft is repre-
sented by b =d = 0 and A = h.The dimensionless free-surface n(x,t)
and total pressure p(Xx,z,t) are

n(x,t) = 23¢/at ——; EWQ,Z + B(t) 5 x> ex(n,t) , z = en(x,t) (5)

p{x,z,t) = 3¢/3t - % e|$¢'2—z/e+B(t) ; x»ex(z,t) , -h<z<en(x,t) (6)
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Equations (2c & d) & (5) may be expanded in a Maclauren series by

Z (s?)n = £32¢ +.§2 —(e s _1 2$¢ 6 ’§¢I2+ dB .
n=0 U 370 52 23z 3t 2 1=0 ;x>0 ,z=0 (7a)

n- E (em” 3" [33 IR ONTAY.
= n! 5 0 1T P e’ ¢, +B] =0 ;x0,2z=0 (7b)
n _n
) i%%l— 3 = [2% + %% - aé%-gg] =0 ;x=0; ~-h<z<O (7c)
n=0 ' X

In addition, the functions ¢, n, B, p, and w may also be expanded in
the small parameter, e, by the following:

T n
d(x,z,t) = néo € n+1<I>(x,z,t) (8a)
s n
n(x,t) = ] ¢ RLIC RS (8b)
n=0
B(t) = J 7 B (8c)
n=0
p(x,z,t) =p_(2) + z 0 n+1p(x,z,t) (8d)
n=0
©
wt =t =( ] e” wn)t (8e)
n=0
in which p(z) = z/e = the dimensionless hydrostatic pressure.

Substituting Eqs. (7) & (8) into Eqs. (2)—-(6) and collecting
terms of the same order in ¢ results in a set of linear boundary value
problems which may be solved in successive order.

Linear Solution
The linear boundary value problem for first-order (%) is

2

v 1@ =0 ;s x 30, -h<z< 0 (9a)
31¢/32 =0 ; X » 0, z =-h (9b)
£{1¢} + oo, BIB/ST =0 ;s x>0, 2z =20 (9¢)
SIQ/BX = —woax/ar ; x =0, -h<z< 0 (9d)
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in which the linear, free-surface operator, £{«}, is defined by

w2 3%/3x% + 3/a2)00) (10)

£{} = (
The solution to Egs. (9) must also satisfy a radiation condition at
infinity as x + + « that will admit only right progressing waves or
bounded evanescent eigenmodes.
The first—order, free-surface elevation, ln(x,r), and the dynamic
pressure 1P(x,z,r) may be determined from

ln(x,r) =W, 31®/8T i x3 0,2z =0 (1D)

1P(x,z,'r) = w 31®/31 ; X» 0, -h<z<O0 (12)

A simple-harmonic solution to the linear problem requires that 1B
be identically zero in Eq. (9c). The linear solution which satisfies
the radiation condition as x + + =» is well-known and may be expressed

by the following eigenfunction expansion (Hudspeth and Chen, 1981):

(x,2,1) = —al¢1(z)sin(x—1) - cos 1 mZZ a ¢ _(z)exp(—u x)  (13)

in which the orthonormal eigenfunctions, ¢ (2z) in the interval of
orthogonality [~h<z<0) are given by ¢m(z) = co*[am(z+h)]/n ; where the
normalizing coastants, n_, are computed from ng = [2umh+sin 2amh]/4am;
provided that mgh+amh tan aph = 0 where a; = + 1.

The dimensionless coefficients, any in Eq. (13) are given by

w (8/24) w (S/2A) D _(a_h)
a, =—=2———p(h) ; a =~— L (14)
1 n1 1 m a3
m m

D, (h) = h{M(1-b/h)+B' }sinh[h(1-b/h)]-h[M(d/h)+B" Jsinh[h(d/h)+U(d/h)]
- M{cosh[h{1=b/h)]}-cosh[h(d/h)-U(d/h) ]} (15a)
Dm(amh) = —(amh)[M(l—b/h)+B‘]sin[(amh)(l—b/h)]
+(amh)[M(d/h)+B']sin[(amh)(d/h)-U(d/h)]—M{cos[(amh)(l—b/h)]

~cos[(amh)(d/h)-U(d/h)]} s om» 2 (15b)

where M and B' are defined by Egs. (4) and U(.) = Heaviside step func-
tion which is required for negative—draft wavemakers (d < 0).
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Second—Order Solution
The boundary value problem for second-order (el) is

v§¢ =0 i x» 0, -h<z<0 (16a)
Szé/az =0 i x» 0, z =-=h (16b)
e 2 L2 3 2
£1,00 +w_ 3,B/3T =~ w) 3°,8/37° +u_ o= [T 0]
- .n 2 (w2 82 @/812 + 98,8/3z) s x 3 0 z =0 (16c)
1" 3z Y9 1 ; ’ '
8,0/3% = —w 3y/aT+d 9/32 ax/az—(azl¢/ax2>x . x=0 ,-h<z<0 (16d)

The solution to Egs. (16) must also satisfy a radiation condition at
infinity as x++w that will admit only right progressing waves or
bounded eigenmodes. Because Eq. (16d) is an inhomogeneous Neumann
condition, any constant times x may also be used for any time-
independent solution.

The Bernoulli constant is oB = (al/2n )2 and 3 ,B/8t = 0 in Eq.
(16¢c). .The first term in the right hand side of Eq. (16c) must vanish
since 39°,9/31° is a homogeneous solution of the linear operator on the
left han& side of Eq. (16c) so that w, = 0.

It is customary in boundary value problems with inhomogeneous
boundary conditions on orthogonal boundaries such as those given by
Egs. (16c & d) to linearly decompose the solution into complementary

homogeneous and inhomogeneous solutions. Accordingly, the solution to
Eqs. (16) may be expressed as the linear sum of four scalar velocity
potentials given by 20 = 285 + 0% + 2f + ¢ in which 2% is a second-
order Stokes wave potential; 2¢e is a near-field evanescent inter-
action potential; 2®f is a wavemaker—forced potential; and ¥ is a
time-independent potential needed to satisfy Eqs. (l6c & d) exactly.

The second—order Stokes wave potential, ZQS, must satisfv exactly
Eqs. (l6a & b); a radiation condition at infinity as x + + « requiring
only right progressing waves, as well as the inhomogeneous part of the
nonlinear free~surface condition in Eg. (17a) given by
Sh

£{,0%0 = alf (s) sin 2x=t) = 0

-
"
\Y
o]

-
N

1]

0 (18)

< The well-known Etokes (1847) wave potential is simply
2% = —(3m0/8)cosech h cosh 2(z+h) sin 2(x=1).
A solution for the near-field evanescent potential that satisfies
a radiation condition as x + + o is assumed to be given by
€ T
2¢ (x,z,7) =a, cos (x—=21) Lq amexp(—umx)[Am¢1(z)¢m(z) + Bm¢i(z)¢%(z)}
m=2

1
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- 2 sin (x~21) 7§ amexp(-umx)[Am¢i(z)¢%(Z) - Bm¢1(2)¢m(z)]

m=2
~sin 2t} | amanexp[—(am+un)x]Cmn[¢m(z)¢n(z)-¢$(z)¢A(Z)]

m=2 n=2

(20a)

where
¢&(Z) = sinh (z+h)/n1; ¢%(z) = sin [am(z+h)]/nm; m>» 2 (20b)

A solution for the wavemaker—forced potential that satisfies a
radiation condition at x » += is assumed to be given by

f o _ : o \
5® (x,z,1) = {E cos (le 2t) + F, sin (le ZL)}Ql(z,
- 7 exp(-8.x){E, sin 2t + F_ cos 21}Q.(2) (21
j=2 J J J ]
ir which the orthonormal eigenfunctions, Q Q.(z), in the interval of
orthogonality [-h < z < 0] are Q.(z) = cos B, (z+h)/N1, where the
n05m31121ng constants are N2 %B .h + sin 1n)/(43,) provided that
h + B h tan g.h = 0 and %nat 81 = 18- : -
- - Jd

An interesting feature of the second-order problem which has not
previously been given much detailed attention is the time~independent
potential, ¥(x,z), which must satisfy the following:

2
VY = 0 ; x3» 0, -h<z<0 (22a)
£{v} kA ~a. cos x 7 a exp(-a x)f_ (¢ Yy :x 2 0 ; 2z =0 (22b)
32 1 R M S 1% ’

Ay ) .

== 0 ;x> 03z =~h (22¢)
a

X4 1

I -7 W (¢1,€,Z) :x =03 -h<z<0 (22d)

Because the time-independent solution is not a progressive wave, the
radiation condition at infinity as x +» + = is relaxed to admit
bounded, time-independent velocities.

Similarly, ¥ may be decomposed into two linearly independent
potentials according to ¥ = fs & ¥

The free surface potentlal ¥ S, must satisfy Egs. (22a & ¢); a
boundedness condition as x » + «; in addition to the inhomogeneous
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free surface boundary condition given by Eq. (22b). A solution which
is bounded is given by

f
y S(x,z) a, cos x mZ? amexp(—umx)[bm¢1(z)¢m(z) + cm¢i(z)¢%(z)}

- a, sinx ) amexp(—amx)[bm¢i(z)¢é(z) - cm¢l(z)¢m(z)]

m=2 (23a)
where

m3a2 [cosechzh + cosecza h]

bm - - = 2 2 - (23D)
(am + 1)
5
m3a (az—l)[cosechzh + cosec a_h]
om m m

cp =" ——s (23¢)
" 2(am + 1)

e e e oy wetottry e e o B
boundedness condition on the velocity as x + + »; in addition to a
homogeneous free surface boundary condition given by

wm 3y
£{\y}=az=0 ;X>0;2=O (2“’)
and an inhomogeneous wavemaker boundary condition given by
wm a fs
v 1 v _ . _ .
= 5 WI(¢1,g,z) + el 0 ; x =03 -h< z< 0 (25

A solution for ¥"™ is given by the following eigenfunction
expansion:

me(x,z) = § d,y.(2)lexp(~u,x) + 6, (x-1)) (26)
Lo 373 j jo
J—
where the orthonormal eigenfunctions, y.(z), in the interval of
orthogonality [~h < z < 0] are given by

wj(z) = cos uj(z+h)/{h/(2—6jo)]l/‘ ;120 (27)

provided that the eigenvalues, Wy are given by uj = jn/h.

The coefficients dj are

-1 1
a, {-2- <u1,wj>z+ Z_

d, =~ (u,-6.
uJ JO) m=2

i am[bm(am<¢1¢m’wj>z+ <¢i¢é"wj>z)
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oo (o <oier,0,>, = <oy0 005501 ;320 (28)

where the inner product terms <e¢,+> are summarized in Appendix II.

CIRCULATION KINEMATICS

It is of interest to compare the second-order (eg), time-
independent solution forced by the weakly nonlinear boundary condi-
tions at both the free surface and the wavemaker boundaries given by
Egs. (17) with the mean horizontal momentum per unit area. The time-
and depth~averaged dimensionless mean horizontal momentum per unit
area is defined by (Phillips, 1977)

n
ME = < hf UE dz>2‘n (29)
i 2n
where the temporal averaging operator <+>, = (2x) [ (+)dt and Ug
is an Eulerian horizontal velocity coumponent. o

The horizontal component of the dimensionless Eulerian velocity
may be determined approximately from

Up = By + 9y + oced) (30)
The dimensionless horizontal component, , that is forced by f. and

W, in Egs. (17) may be estimated from the time-independent velocity
potential according to U, = Uy °°(do) + Uy e(am) where
H ’

n
-1 1 . 2_
Uy oldg) = ~e(2,) {——_—_—Dl(h)¢i(o)}{h[n(l—b/h)"'B Jeosh b(w:-tanh b)

~h[M(d/h)+B' }sinh 4 sech h

¢ _(0)D_(a_h)
+ w6 L L. [cosech2h+cosech2u hl} (31a)
o 2, 2 m
m=2 n_a (a"+1)
nom o m
wn 3_(0)D_(a_h)
U (a ) = g——t——t>=— COS X exp-a_X
Y,e' m Dl(h)¢l<°) m=2 n a3(a2+1) m
mom o m
[cosech2h+cosech2amh][am—tan x] (31b)

Similarly, the dimensionless horizontal component, U¢, may be esti~
mated from the first-order eigenmodes by a Maclauren series expansion
about the still water level according to

1 —emo<(31¢/3x)(a1¢/81)>2ﬂ= U

Lw(wo)*U@’e(am) ; 2=0 (32a)
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The dimensionless, far-field component, U¢ °°(wo), is given by
b
= ! (32b)
UQ’m(wo) = e(Zmo) 3
which is the well-known Eulerian description of the dimensionless
Stokes drift (Llonguet-Higgins, 1953). The dimensionless evanescent
component, U¢’e(am), is given by

UQ,e(am) = ~(e/2)cos x mZZ am¢m(o)exp - o x [am— tan x] (32¢)

In the far-field (x > 3h, say), the evanescent components of the
mean horizontal momentum per unit area, U e(a Y + U (a_), are
negligible. This implies that far away frdm the local wavemaker
effects, the mean horizontal momentum per unit area is approximately

n
-1 1 . 2
~ 3 L h(M(1-b/h)+B' )cosh b(w ~tanh b)
My~ eC2 )71 [Dl(h)”(o)][(( /h)+B") :

- h(M(d/h)+B')sinh d sech h
6 ¢m(o)Dm(amh)

° m=2 n uz(a2+l)
mm m

+ (cosechzh + cosechzamh)]} (33

which implies that for wavemakers incersecting the free surface (i.e.,
b=0), the leéding—order coefficient, do’ approximatelv estimates the
uniform return current required to insure a zero net mass flux in a
closed wave flume. This may be observed by plotting the dimension-
less, time-independent Kulerian velocities.

The dimensioniess horizontal component of the second-order (e),
time~independent fluid motion is

wIn £s
¥ 3
T Fg— -
LW(X’Z) € Tox £ T3
= ¢ Z d_(u_w,(z)axp—u.x—d. )
iZ0 3’3 jo
3 S
wo n, Dm(amn/ exp-amx
- g — —= [1+2h cosech 2h]cos x ¥ :
4 D, (h) “ n 2, 2
H m=2 m cn(am+l)

[cosech2h+cosec2amh][¢I(z)¢m(z)(l+amtan x)

* 31(2)e) (2)(a_-tan x)] (34a)
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and the dimensionless vertical component is

W fs
: L A 1
Vylx,z) = —e = * Tz
= 5 od.p.u'(z)exp-y.x
€ L dyuyvilzienpu,
j=1
w3 n D (a_h) exp-a x
0 - mom m
-€ . [1+2h cosech 2h}cos x ; - T
4 Dl( ‘ m=2 m um(a;+l)

[cosech2h+cosec2amh][¢1(z)¢&(z)(1+amtan x)
- @1(z)¢m(z)(am-tan x)] ( 34Db)

where $.(z) = sin y j(z+h)//ET

The magnitude of the velocity [U%(x,z) + Vz(x,z)]l/2 is
illustrated in Figs. 2 & 3 for both a piston ang hinged wavemaker.
Figures 2 & 3 demonstrate that the mean return current is estimated
reasonably well by the leading coefficient, do'

REFERENCES

Daugaard. 1972. "Generation of regular waves in the laboratory."”

Doctoral dissertation. Institute of Hydrodynamics Engineering, Tech~
nical University of Denmark, Copenhagen, Denmark.

Flick R.E. and R.T. Guza. 1980. "Paddle generated waves in labora-

tory channels.” J. Waterway, Port, Coastal & Ocean Div., ASCE 106(1),
pp. 79-97.

Hudspeth, R.T. and M~C Chen. 198]. "Design curves for hinged wave-
makers: Theory.” J. Hydraulics Div., ASCE, 107(5), pp. 533-552.

Longuet-Higgins, M.S. 1953. “Mass transport in water waves.” Phil.
Trans. A, 245, pp. 535-81.

Madsen, 0.S. 1971. "On the generation of long waves.” J.
Geophysical Res., 76(36), pp. 8672-8683.

Massel, S.R. 198l. "On the nonlinear theory of mechanically
generated waves in laboratory channels.” Mitteilungen Heft 70, 1981,
Leichtweiss~Institut Fur Wasserbau der Technischen Universitat
Braunschweig, West Germany.

-233-



N ﬂo/ﬁ:
Rmo - - - -t
b o= = - = - - _ _
\\\,__ _— e -— -— — i
AN T D DT T T T
IyIIzz-I-I-C-Iv
v N2 T T
L N -— -— -— -— ]
\ e - 2 -7 - l
| . N3
\ ¢ ' 2 3 x/h
Tk
\ do /IR S
NS -z .- - X
‘\_\\\‘__ -— -— -— -— — = 0.5
NN N e e - -— — -— .
YRTIIZ-I-I-2-000 1
NI - T T _ "
N - - - l
- - - == — — s

o

Fig. 2.

-

/1]~

Magnitude of dimensionless time—independent

x/h

velocity (piston)

—_— - = - _ - _g,r
AN
NN I T DD T T _ T _ ~on
Af\\g__,. -— -— -— -—
S S N —_ — -—
-.'?::::._“.,“_—._—l
0 i 2 3 x/h
T z/h
\, do/m
Pl - - -
— e e e — — — —
SN~ - - = -— -— -— -— L .
N o~ o~ - - — — — h o]
:\\\_._ -—_ -— -— -—
vN N e e e e — — -— l
0 i : >

Fig. 3.

-234~

x/h

Magnitude of dimensionless time—independent velocity (hinged)



