• 제목/요약/키워드: Nonlinear Boundary Condition

검색결과 352건 처리시간 0.028초

조종날개 전개시점 경계조건을 포함한 지능화 탄약의 사거리 최대화 유도 기법 (Optimal Guidance of Guided Projectile for Range Maximization with Boundary Condition on Fin Deployment Timing)

  • 김용재
    • 전기학회논문지
    • /
    • 제68권1호
    • /
    • pp.129-139
    • /
    • 2019
  • In order for a gun-launched guided projectile to glide to the maximum range, when to deploy the fin and start flight with guidance and control should be considered in range optimization process. This study suggests a solution to the optimal guidance problem for flight range maximization of the flight model of a guided projectile in vertical plane considering the aerodynamic properties. After converting the nonlinear Multi-Phase Optimal Control Problem to Two-Point Boundary Value Problem, the optimized guidance command and the best fin deployment timing are calculated by the proposed numerical method. The optimization results of the multiple flight rounds with various initial velocity and launch angle indicate that determining specific launch condition incorporated with the guidance scheme is of importance in terms of mechanical energy consumption.

DOUBLY NONLINEAR PARABOLIC EQUATIONS INVOLVING p-LAPLACIAN OPERATORS VIA TIME-DISCRETIZATION METHOD

  • Shin, Kiyeon;Kang, Sujin
    • 대한수학회보
    • /
    • 제49권6호
    • /
    • pp.1179-1192
    • /
    • 2012
  • In this paper, we consider a doubly nonlinear parabolic partial differential equation $\frac{{\partial}{\beta}(u)}{{\partial}t}-{\Delta}_pu+f(x,t,u)=0$ in ${\Omega}{\times}[0,T]$, with Dirichlet boundary condition and initial data given. We prove the existence of a discrete approximate solution by means of the Rothe discretization in time method under some conditions on ${\beta}$, $f$ and $p$.

GLOBAL EXISTENCE AND NONEXISTENCE OF SOLUTIONS FOR COUPLED NONLINEAR WAVE EQUATIONS WITH DAMPING AND SOURCE TERMS

  • Ye, Yaojun
    • 대한수학회보
    • /
    • 제51권6호
    • /
    • pp.1697-1710
    • /
    • 2014
  • The initial-boundary value problem for a class of nonlinear higher-order wave equations system with a damping and source terms in bounded domain is studied. We prove the existence of global solutions. Meanwhile, under the condition of the positive initial energy, it is showed that the solutions blow up in the finite time and the lifespan estimate of solutions is also given.

TWO JUMPING NONLINEAR TERMS AND A NONLINEAR WAVE EQUATION

  • Jung, Tacksun;Choi, Q-Heung
    • 충청수학회지
    • /
    • 제22권4호
    • /
    • pp.675-687
    • /
    • 2009
  • We find the multiple nontrivial solutions of the equation of the form $u_{tt}-u_{xx}=b_1[(u+1)^{+}-1]+b_2[(u+2)^{+}-2]$ with Dirichlet boundary condition. Here we reduce this problem into a two-dimensional problem by using variational reduction method and apply the Mountain Pass theorem to find the nontrivial solutions.

  • PDF

비선형 응답이력해석의 영향인자에 대한 사례연구 - 1989 Loma Prieta 지진 계측기록을 중심으로 - (Case Study on Influential Factors of Nonlinear Response History Analysis - Focused on 1989 Loma Prieta Earthquake -)

  • 유계항;이진선
    • 한국지반공학회논문집
    • /
    • 제33권12호
    • /
    • pp.45-58
    • /
    • 2017
  • 최근 들어 시설물별 내진설계기준이 성능기반 내진설계로 전환됨에 따라, 신뢰성있는 비선형 응답이력해석(Response-history analysis, RHA)에 대한 요구가 높아지고 있다. 그러나, 부지응답해석 분야에 있어서는 1970년대 이후 등가선형 해석이 표준절차로 자리잡고 있음에 따라, 이를 대체하기 위해서는 비선형 응답이력해석의 신뢰성이 확보되어야 한다. 본 논문에서는 1989년 미국 Loma Prieta 지진기록을 바탕으로 다층지반에 대해서 비선형 RHA를 이용한 부지응답해석 결과의 신뢰성을 검증하였다. 이를 위하여, 비선형 RHA를 위한 비선형 지반모델의 선정방법과 3차원 해석시 요구되는 기반암 경계조건의 영향을 평가 하였다. 평가 결과, 제한된 조건하에서 가장 정확한 비선형 지반모델과 경계조건을 적용 시 비선형 RHA의 결과는 등가선형 해석결과와 유의미한 차이는 발생하지 않음을 알 수 있었다. 또한, 3차원 해석을 시행하는 경우, 전체 모델의 회전운동을 제어하기 위하여 최 하단부 흡수 경계조건을 적용해야 함을 알 수 있었다.

형상과 단부조건에 따른 아치의 비선형 동적거동 (A Study on the Nonlinear Dynamic Behaviors of Arches due to the Change of Shapes and Boundary conditions)

  • 여동훈;이상호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.441-448
    • /
    • 1998
  • In this study, an explicit transient analysis program considering material and geometric nolinearities has been developed and used to analyze the dynamic behaviors of circular, parabolic, sinusoidal and catenary arches according to the change of shapes and boundary conditions. To understand dynamic behaviors of arches, first of all, the results of free vibration analysis for four kinds of arches are discussed. The results of transient analysis under impact loads we discussed in respect of boundary condition, change of height, and arch-shape. The dynamic behaviors of arches by nonlinear transient analysis considering both material and geometric nolinearities are also discussed.

  • PDF

QUADRATURE METHOD FOR EQUATIONS WITH NONLINEAR BOUNDARY CONDITIONS ARISING IN A THERMAL EXPLOSION THEORY

  • Eunkyung Ko
    • East Asian mathematical journal
    • /
    • 제39권3호
    • /
    • pp.271-278
    • /
    • 2023
  • We consider a 1-dimensional reaction diffusion equation with the following boundary conditions arising in a theory of the thermal explosion {-u"(t) = λf(u(t)), t ∈ (0, l), -u'(0) + C(0)u(0) = 0, u'(l) + C(l)u(l) = 0, where C : [0, ∞) → (0, ∞) is a continuous and nondecreasing function, λ > 0 is a parameter and f : [0, ∞) → (0, ∞) is a continuous function. We establish the extension of Quadrature method introduced in [8]. Using this extension, we provide numerical results for models with a typical function of f and C in a thermal explosion theory, which verify the existence, uniqueness and multiplicity results proved in [6].

복소 경계요소법에 의한 비선형 자유수면문제 연구 (A Complex Velocity Boundary Element Method for Nonlinear Free Surface Problems)

  • 홍석원
    • 한국해양공학회지
    • /
    • 제4권1호
    • /
    • pp.62-70
    • /
    • 1990
  • Cauchy의 적분공식을 복소속도(complex velocity)에 적용하여 포텐시얼 유동을 해석하는 복소경계요소법이 개발되었다. 이 결과로 얻어지는 적분방정식은 경계면에서의 접선속도(tangential velocity)와 법선속도(normal velocity)의 함수로 주어진다. 자유수면에서의 접선속도의 시간변화(evolution of tangential velocity)를 수식화하기 위하여 새로운 비선형 동역학적 자유수면경계조건(nonlinear dynamic free surface boundary condition)을 유도하였다. 복소포텐시얼 대신 복소속도를 이용하는 이 방법은 유장내의 특이점(field singularity)을 용이하게 고려할 수 있으며, 수치미분없이 직접 경계면에서의 유속을 해로서 구하게 된다. 그러나 자유수면이 존재하는 문제의 경우에는, 자유수면에서의 동역학적 경계조건을 만족 시키기 위한 계산과정에 접선 벡타의 변화량을 추정하는 것이 포함되게 되어, 계산과정이 다소 복잡하게 된다.

  • PDF

UNIQUE POSITIVE SOLUTION FOR A CLASS OF THE SYSTEM OF THE NONLINEAR SUSPENSION BRIDGE EQUATIONS

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • 제16권3호
    • /
    • pp.355-362
    • /
    • 2008
  • We prove the existence of a unique positive solution for a class of systems of the following nonlinear suspension bridge equation with Dirichlet boundary conditions and periodic conditions $$\{{u_{tt}+u_{xxxx}+\frac{1}{4}u_{ttxx}+av^+={\phi}_{00}+{\epsilon}_1h_1(x,t)\;\;in\;(-\frac{\pi}{2},\frac{\pi}{2}){\times}R,\\{v_{tt}+v_{xxxx}+\frac{1}{4}u_{ttxx}+bu^+={\phi}_{00}+{\epsilon}_2h_2(x,t)\;\;in\;(-\frac{\pi}{2},\frac{\pi}{2}){\times}R,$$ where $u^+={\max}\{u,0\},\;{\epsilon}_1,\;{\epsilon}_2$ are small number and $h_1(x,t)$, $h_2(x,t)$ are bounded, ${\pi}$-periodic in t and even in x and t and ${\parallel} h_1{\parallel}={\parallel} h_2{\parallel}=1$. We first show that the system has a positive solution, and then prove the uniqueness by the contraction mapping principle on a Banach space

  • PDF

THE STUDY OF THE SYSTEM OF NONLINEAR WAVE EQUATIONS

  • Jung, Tacksun;Choi, Q-Heung
    • 충청수학회지
    • /
    • 제20권3호
    • /
    • pp.261-267
    • /
    • 2007
  • We show the existence of the positive solution for the system of the following nonlinear wave equations with Dirichlet boundary conditions $$u_{tt}-u_{xx}+av^+=s{\phi}_{00}+f$$, $$v_{tt}-v_{xx}+bu^+=t{\phi}_{00}+g$$, $$u({\pm}\frac{\pi}{2},t)=v({\pm}\frac{\pi}{2},t)=0$$, where $u_+=max\{u,0\}$, s, $t{\in}R$, ${\phi}_{00}$ is the eigenfunction corresponding to the positive eigenvalue ${\lambda}_{00}=1$ of the eigenvalue problem $u_{tt}-u_{xx}={\lambda}_{mn}u$ with $u({\pm}\frac{\pi}{2},t)=0$, $u(x,t+{\pi})=u(x,t)=u(-x,t)=u(x,-t)$ and f, g are ${\pi}$-periodic, even in x and t and bounded functions in $[-\frac{\pi}{2},\frac{\pi}{2}]{\times}[-\frac{\pi}{2},\frac{\pi}{2}]$ with $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}f{\phi}_{00}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}g{\phi}_{00}=0$.

  • PDF