• Title/Summary/Keyword: Nondestructive tests

Search Result 250, Processing Time 0.022 seconds

Study on Smart Seat Technology for Railroad Vehicles Using Piezoelectric Sensors (압전소자를 이용한 철도차량용 스마트 좌석 기술 적용성 검토)

  • Kang, Donghoon;Kim, Heon-Young;Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.5
    • /
    • pp.390-396
    • /
    • 2014
  • A study on smart seats for railroad vehicles was conducted using piezoelectric (PZT) sensors. For this purpose, the concept of passenger friendly smart seats was defined, and a PZT sensor was selected as the optimum sensor based on this concept. Using PZT sensors, simulation tests were performed using a sub-scale model railroad vehicle. In these tests, the main functions of the smart seats were extracted and simplified to improve the effectiveness of the simulation tests. Based on the test results, the system for smart seats proposed in this paper was successfully verified using PZT sensors and the dedicated operation software for the system. This paper will contribute to the improvement of services in high-speed rail systems through advances in ticket checking tasks.

Nondestructive Inspection of Launch Vehicle Structural Components (우주 발사체 구조 요소의 비파피검사)

  • Kong, Cheol-Won;Youn, Jong-Hoon;Park, Jae-Sung;Eun, Se-Won;Jang, Young-Soon;Yi, Yeong-Moo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.331-337
    • /
    • 2009
  • Space launch vehicles require highly reliable, lightweight structures. It is thus important to monitor the structural health of these components with nondestructive inspections. In this paper, we studied an example of a nondestructive inspection that was partially applied to the manufacture and inspection of a launch vehicle. Ultrasonic tests, X-rays, tapping, and acoustic emissions comprised the inspection method. A payload fairing, high pressure tank, fastener part, and bonding part were used as hardware to be inspected. We proposed a quantitative standard for debonding inspection of the payload fairing and acoustic emission data for the proof test of the high pressure tank. We analyzed the fracture mode of the sandwich fastener part according to frequency changes. We also proposed a standard specimen for ultrasonic inspection of bonds of different materials. The present analyses and results provide data for evaluation of the launch operation sequence to ensure launch vehicles afford high reliability.

A Study on Electrochemical Polarization Test for Embrittlement Damage Evaluation of Aged Cr-Mo Steel (Cr-Mo강 시효재의 취화손상 평가를 위한 전기화학적 분극시험에 관한 연구)

  • Yu, Hyo-Sun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.6
    • /
    • pp.411-419
    • /
    • 1999
  • It has been well recognized that a long term service at elevated temperature of $350^{\circ}C{\sim}550^{\circ}C$ induces embrittlement damage due to carbide precipitation and/or P, Sb and Sn segregation at grain boundaries and thereby deteriorates the grain boundary strength of heat resisting components in the energy-related plants. Therefore, it is very important to assess quantitatively the extent of embrittlement damage of heat resisting components to secure the reliable and efficient service condition and to prevent brittle failure in service. However, because fracture tests are limited in size and number of specimen obtained from the structural components, nondestructive test method is required. In this study, the optimum electrochemical parameters are investigated and discussed to evaluate nondestructive embrittlement damage for aged 2.25Cr-1Mo steels by means of electrochemical polarization test method (ECPTM) in proper corrosive environment. In addition, the electrochemical test results are compared with embrittlement degree evaluated by semi-nondestructive SP test.

  • PDF

Analysis of Ultrasonic Resonance Signal in Multi-Layered Structure (다중접착구조물의 초음파 공진 신호 분석)

  • Kim, Dong-Ryun;Kim, Jae-Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.4
    • /
    • pp.401-409
    • /
    • 2012
  • Ultrasonic testing are far superior to other nondestructive tests for detecting the disbond interface which occurred in adhesive interface. However, a solid rocket motor consisting of a steel case, rubber insulation, liner, and propellant poses many difficulties for analyzing ultrasonic waves because of the superposition of reflected waves and large differences in acoustic impedance of various materials. Therefore, ultrasonic tests for detecting the disbond interface in solid rocket motor have been applied in very limited areas between the steel case and rubber insulation using an automatic C-scan system. The existing ultrasonic test cannot detect the disbond interface between the liner and propellant of a solid rocket motor because most of the ultrasonic waves are absorbed in the rubber material which has low acoustic impedance. This problem could be overcome by analyzing the resonance frequency from the frequency spectrum using the ultrasonic resonance method. In this paper, a new technique to detect the disbond interface between the liner and propellant using ultrasonic resonance characteristics is discussed in detail.

Physical and Mechanical Characteristics of Subgrade Soil using Nondestructive and Penetration Tests (비파괴시험과 관입시험에 의한 노상토의 물리·역학적 특성)

  • Kim, Kyu-Sun;Kim, Dong-Hee;Fratta, Dante;Lee, Woojin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1C
    • /
    • pp.19-27
    • /
    • 2011
  • This paper evaluates the applicability of wave-based nondestructive methodologies and a penetration test for compaction quality measurements during road construction. To evaluate the physical and mechanical properties of compacted subgrade soil layers, soil stiffness gauge (SSG), time domain reflectometry (TDR), and miniature electro-mechanical systems (MEMS) accelerometers were used to nondestructively evaluate the soil response during and after compaction and dynamic cone penetrometer (DCP) profiles were used to evaluate the soil shear strength after compaction was completed. At the field site, two types of soils were compacted with four different compaction equipments and energies. Field testing results indicate that soil parameters evaluated by different testing methods, which are SSG, TDR, MEMS accelerometer, and DCP, are highly correlated. In addition, it is shown that the physical and mechanical tests deployed in this study can be used as alternative methods to the conventional compaction quality evaluation methods when assessing the overall quality and the engineering response of compacted lifts.

Estimation of Thickness of Concrete Structures using the Impact Echo Method and Ultrasonic Pulse Velocity Method

  • Hong, Seonguk;Lee, Yongtaeg;Kim, Seunghun;Lee, Changsik
    • Architectural research
    • /
    • v.18 no.4
    • /
    • pp.179-184
    • /
    • 2016
  • The structure must be periodically checked and measures must be taken to prevent deterioration in building construction. From this point of view, a nondestructive test is essential to estimate whether the construction of buildings is proper, and whether the dimension of depositing concrete is consistent and without damage. This study estimated the thickness of the concrete component of construction framework using the ultrasonic velocity method and the impact echo method, in order to investigate reliability of the estimation of the thickness of normal strength concrete and high strength concrete, leading to the following conclusions. In the estimation of the thickness of the concrete structures, specimens of normal strength of 24MPa and specimens of high strength of 40MPa demonstrated an average error rate of 5.1% and 2.2%, respectively. The impact-echo method, one of the non-destructive tests, is verified as an efficient diagnostic technique. With this information, we will determine specific standards for the maintenance of structures, and the re-creation of lost building blueprints.

A Study on the Characteristics of the Excited Vibration Signals in a Thermosonic Test (초음파가진 열화장시험 시 가전된 진동 신호 특성 연구)

  • Kang, Bu-Byoung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.2
    • /
    • pp.118-126
    • /
    • 2011
  • The characteristics of the responses obtained in thermosonic tests are investigated in this study to improve the performance of a thermosonic test system. Thermosonic tests are conducted with an acoustic horn with high power capability to investigate the characteristics of the vibration produced in turbine blades with complex geometry. The influences of the excitation signal that is input to the horn and the coupling methods between a clamp and the acoustic horn on the characteristics of the vibration excited in a component are presented. As a result, an excitation method with a fast narrow band chirp test (sweep test) and a stud coupling is proposed as an excitation method for thermosonic testing. This method can be applied to different types of turbine blades and also to other components.

Nonlinear Subgrade Model-Based Comparison Study between the Static and Dynamic Analyses of FWD Nondestructive Tests (노상의 비선형 모델에 근거한 비파괴 FWD 시험에 있어 정적과 동적 거동의 비교연구)

  • Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.19 no.1
    • /
    • pp.73-80
    • /
    • 2017
  • PURPOSES : This paper presents a comparison study between dynamic and static analyses of falling weight deflectometer (FWD) testing, which is a test used for evaluating layered material stiffness. METHODS: In this study, a forward model, based on nonlinear subgrade models, was developed via finite element analysis using ABAQUS. The subgrade material coefficients from granular and fine-grained soils were used to represent strong and weak subgrade stiffnesses, respectively. Furthermore, the nonlinearity in the analysis of multi-load FWD deflection measured from intact PCC slab was investigated using the deflection data obtained in this study. This pavement has a 14-inch-thick PCC slab over fine-grained soil. RESULTS: From case studies related to the nonlinearity of FWD analysis measured from intact PCC slab, a nonlinear subgrade model-based comparison study between the static and dynamic analyses of nondestructive FWD tests was shown to be effectively performed; this was achieved by investigating the primary difference in pavement responses between the static and dynamic analyses as based on the nonlinearity of soil model as well as the multi-load FWD deflection. CONCLUSIONS : In conclusion, a comparison between dynamic and static FEM analyses was conducted, as based on the FEM analysis performed on various pavement structures, in order to investigate the significance of the differences in pavement responses between the static and dynamic analyses.

Probability Analysis for Impact Behavior of Composite Laminates Subjected to Low-Velocity Impact (저속충격을 받는 복합적층판의 충격거동에 대한 확률분포 특성)

  • Ha, Seung-Chul;Kim, In-Gul;Lee, Seok-Je;Cho, Sang-Gyu;Jang, Moon-Ho;Choi, Ik-Hyeon
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.18-22
    • /
    • 2009
  • In this paper, we examined impact force and impact behavior through low velocity impact tests of composite laminates. And through c-scan as nondestructive inspection, explored the damaged area being difficult to examine with the visual inspection. Through CAI tests, we also measured the compression strength of composite laminates subjected to low velocity impact. To examine the characteristics of impact behavior measured from low velocity impact test, nondestructive inspection, and CAI test, the simulated data are generated from the test data using Monte-Carlo simulation, then represented it by probability distribution. The testing results using visible stochastic distribution were examined and compared.

A Study on the Three Dimensional Measurement of Internal Cavity by Using X-Ray NDT Method (X선 비파괴시험에 의한 내부 기공의 3차원 측정 연구)

  • Lim, Soo-Yong;Choi, Yong-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.14 no.3
    • /
    • pp.177-184
    • /
    • 1994
  • The three dimensional measuring method with minimizing operational errors for the arbitrary shaped-internal cavity based on the information of the X-ray nondestructive test is presented. Two experimental tests using artificial cavities were considered in order to verify the availity of PEVACA. In these test, X-ray NDT was conducted for detecting cavities, and the comparion between the calculating values from PEVACA and the real values from measuring the cavities was performed. As a result of this study, three dimensional cavities information using PEVACA are in good agreement with the real measured values within ${\pm}0.5mm$. The computer code, "PEVACA", contributes not only to improvement of data accuracy but also to saving of the work time and data documentation.

  • PDF