DOI QR코드

DOI QR Code

Physical and Mechanical Characteristics of Subgrade Soil using Nondestructive and Penetration Tests

비파괴시험과 관입시험에 의한 노상토의 물리·역학적 특성

  • 김규선 (삼성물산(주) 건설부문 기반기술연구소) ;
  • 김동휘 (고려대학교 건축.사회환경공학부) ;
  • 프라타 단테 (위스콘신매디슨대학교 사회환경공학과) ;
  • 이우진 (고려대학교 건축.사회환경공학부)
  • Received : 2010.09.15
  • Accepted : 2010.11.07
  • Published : 2011.02.28

Abstract

This paper evaluates the applicability of wave-based nondestructive methodologies and a penetration test for compaction quality measurements during road construction. To evaluate the physical and mechanical properties of compacted subgrade soil layers, soil stiffness gauge (SSG), time domain reflectometry (TDR), and miniature electro-mechanical systems (MEMS) accelerometers were used to nondestructively evaluate the soil response during and after compaction and dynamic cone penetrometer (DCP) profiles were used to evaluate the soil shear strength after compaction was completed. At the field site, two types of soils were compacted with four different compaction equipments and energies. Field testing results indicate that soil parameters evaluated by different testing methods, which are SSG, TDR, MEMS accelerometer, and DCP, are highly correlated. In addition, it is shown that the physical and mechanical tests deployed in this study can be used as alternative methods to the conventional compaction quality evaluation methods when assessing the overall quality and the engineering response of compacted lifts.

본 연구에서는 도로 성토현장에서 파 기반의 비파괴시험법과 관입시험의 현장 다짐품질 측정에 대한 적용성을 평가하였다. 현장에서 다짐 노상토의 물리 역학적 특성을 평가하기 위해 흙강성 측정기(SSG), 시간영역 반사측정기(TDR), 소형 전기-기계 시스템(MEMS) 가속도계 등의 비파괴시험을 이용하여 다짐 전후 흙의 응답을 평가하였고, 동적 콘관입시험기(DCP)를 이용하여 다짐 후 전단특성을 평가하였다. 현장시험은 두 가지 흙의 종류에 대해 네 가지의 다짐장비 및 다짐에너지로 조성된 성토지반에서 수행되었다. 시험결과, 조사 매커니즘이 다른 시험법인 SSG, TDR, MEMS 가속도계 및 DCP로 측정된 흙의 파라메터들은 상호 연관성이 있는 것으로 분석되었으며, 다짐지반의 전체적인 품질 및 공학적인 응답을 고려하여 시험 방법들을 현장에 적용할 경우, 기존의 다짐도 평가 방법들을 대체 또는 보완하여 현장에서 신속한 다짐품질 평가를 수행할 수 있는 것으로 나타났다.

Keywords

References

  1. 국토해양부(2009) 도로공사 표준시방서.
  2. 박철수, 목영진, 최찬용, 이태희(2009) 압축파 속도를 이용한 철도 토공노반의 품질관리 방안: I. 예비연구. 한국지반공학회논문집, 한국지반공학회, 제25권, 제9호, pp. 45-55.
  3. 조성민(2002) 도로 성토체의 다짐도 평가 방법. 도로학회지: 도로, 한국도로학회, 제4권, 제4호, pp. 41-45.
  4. 최준성(2008) 실내 및 현장실험을 통한 DCPT의 노상토 다짐관리기준 정립에 관한 기초연구. 한국도로학회논문집, 한국도로학회, 제10권, 제4호, pp. 103-116.
  5. 한국건설기술연구원(2007) 한국형 포장설계법 개발과 포장성능 개선방안 연구. No. KPRP-07, 2단계 3차년도 최종보고서, 건설교통부.
  6. Abu-Farsakh, M. Y., Nazzal, M. D., Alshibli, K., and Seyman, E. (2005) Application of dynamic cone penetrometer in pavement construction control. Journal of Transportation Research Board, No. 1913, pp. 53-61.
  7. Benson, C. and Bosscher, P. (1999) Time-domain reflectometry in geotechnics: A review. Nondestructive and Automated Testing for Soil and Rock Properties, STP 1350, ASTM, W. Marr and C. Fairhurst, Eds., pp. 113-136.
  8. Burnham, T. and Johnson, D. (1993) In Situ Foundation Characterization using the Dynamic Cone Penetrometer. Report No. MN/RD 93/05, Mn Dept. of Trans., Maplewood, MN, pp. 32.
  9. Edil, T. B. and Sawangsuriya, A. (2006) Use of stiffness and strength for earthwork quality evaluation. ASCE Geotechnical Special Publication (GSP): Site and Geomaterial Characterization, GeoShanghai Conference, Shanghai, China.
  10. Fredlund, D. G., Xing, A., Fredlund, M. D., and Barbour, S. L. (1996) The relationship of the unsaturated soil shear to the soilwater characteristic curve. Canadian Geotechnical Journal, Vol. 33, No. 3, pp. 440-448. https://doi.org/10.1139/t96-065
  11. Hoffman, K. Varuso, R., and Fratta, D. (2006) The use of low-cost MEMS accelerometers in near-surface travel-time tomography. GeoCongress 2006 Conference. Atlanta, GA.
  12. Humboldt Mfg. Co. (2010) http://www.humboldtmfg.com/c-1-p-6-id-1.html (Accessed 2010-07-28).
  13. Konrad, J.-M. and Lachance D. (2001) Use of in situ penetration tests in pavement evaluation. Canadian Geotechnical Journal, Vol. 38, No. 5, pp. 924-935. https://doi.org/10.1139/t01-024
  14. Mamlouk, M.S. (1988). Nuclear Density Testing of Granular Materials: State of the Art. Research Report No. FHWA-AZ88-839, Federal Highway Administration.
  15. Nazzal, M. (2003) Field evaluation of in-situ test technology for QC/QA procedures during construction of pavement layers and embankments, MS thesis, Louisiana State University, Baton Rouge, Louisiana, USA.
  16. Petersen, L., Peterson, R. and Nelson, C. (2002). Comparison of quasistatic plate load tests with the Humboldt Geogauge. CNA Consulting Engineers Rep.
  17. Powell, W. D., Potter, J. F., Mayhew, H. C., and Nunn, M. E. (1984) The structural design of bituminous roads. TRRL Report LR 1132, pp. 62.
  18. Sawangsuriya, A., Edil, T. B., and Bosscher, P. J. (2003) Relationship between soil stiffness gauge modulus and other test moduli for granular soils. Transportation Research Record 1849, Paper No. 03-4089, pp. 3-10. https://doi.org/10.3141/1849-01
  19. Sawangsuriya, A., Edil, T. B., Bosscher, P. J., and Wang, X. (2006) Small-strain stiffness behavior of unsaturated compacted soils. Proceedings of the Fourth International Conference on Unsaturated Soils, Unsaturated Soils 2006, ASCE, Geotechnical Special Publication, No. 147, Carefree, AZ, pp. 1121-1132.
  20. Schneider, J. M. and Fratta, D. (2009) Time domain reflectometry: Parametric study for the evaluation of physical properties in soils. Canadian Geotechnical Journal. Vol. 46, No. 7, pp. 753-767. https://doi.org/10.1139/T09-018
  21. Topp, G. C., Davis, J. L., and Annan, A. P. (1980) Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resources Research, Vol. 16, No. 3, pp. 574-582. https://doi.org/10.1029/WR016i003p00574
  22. Webster, S. L., Grau, R. H., and Williams, T. P. (1992) Description and Application of Dual Mass Dynamic Cone Penetrometer. Final Report, Department of Army, Waterways Experiment Station, Vicksberg, MS.