• Title/Summary/Keyword: Nondestructive measurement

Search Result 588, Processing Time 0.027 seconds

Radar Imaging of Concrete Specimens with Improved Resolution Using Expanded Frequency Bandwidth (주파수 대역 확장을 이용한 콘크리트 시편의 레이더 영상 분해능 향상)

  • 임홍철;이주희
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.13-21
    • /
    • 2002
  • Frequency bandwidth has been combined to determine adequate frequency bandwidth which is necessary for nondestructive testing when using inverse synthetic aperture radar(ISAR). For imaging inside of concrete specimens using radar, the principles of radar and signal processing are discussed. Experimental data obtained from radar measurement of three different concrete specimens at two different frequency bandwidths of 2∼3.4 GHz, 3.4∼5.8 GHz and these two frequencies are combined to obtain improved imagery. A signal processing scheme has been implemented to visualize inside concrete specimens. The influence of frequency bandwidth was analyzed in nondestructive testing by changing frequency bandwidth for concrete specimen.

Nondestructive Optical Measurement of Refractive-index Profile of Graded-index Lenses

  • Lee, Byoung-Hwak;Shin, Nae-Ho;Jeong, Kwan;Park, Myoung-Jin;Kim, Byung-Gyu;Yoo, Jang-Hoon;Kim, Dae-Geun;Yun, Ki-Hyuck;Lee, Kew-Seung;Kim, Kyung-Hwan;Kim, Dae-Kyu;Park, Seung-Han
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.468-471
    • /
    • 2009
  • We propose a simple nondestructive method to obtain refractive-index profiles of a graded-index (GRIN) light-focusing rod by means of a diffraction grating. In our proposed method, a laser beam is illuminated through a diffraction grating perpendicular to the axis of the GRIN lens and the separation between the zeroth and first-order diffraction peaks is measured and analyzed. The results demonstrate that the refractive-index profiles of commercially available GRIN lenses can be successfully reconstructed.

Nondestructive Testing of Residual Stress on the Welded Part of Butt-welded A36 Plates Using Electronic Speckle Pattern Interferometry

  • Kim, Kyeongsuk;Jung, Hyunchul
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.259-267
    • /
    • 2016
  • Most manufacturing processes, including welding, create residual stresses. Residual stresses can reduce material strength and cause fractures. For estimating the reliability and aging of a welded structure, residual stresses should be evaluated as precisely as possible. Optical techniques such as holographic interferometry, electronic speckle pattern interferometry (ESPI), Moire interferometry, and shearography are noncontact means of measuring residual stresses. Among optical techniques, ESPI is typically used as a nondestructive measurement technique of in-plane displacement, such as stress and strain, and out-of-plane displacement, such as vibration and bending. In this study, ESPI was used to measure the residual stress on the welded part of butt-welded American Society for Testing and Materials (ASTM) A36 specimens with $CO_2$ welding. Four types of specimens, base metal specimen (BSP), tensile specimen including welded part (TSP), compression specimen including welded part (CSP), and annealed tensile specimen including welded part (ATSP), were tested. BSP was used to obtain the elastic modulus of a base metal. TSP and CSP were used to compare residual stresses under tensile and compressive loading conditions. ATSP was used to confirm the effect of heat treatment. Residual stresses on the welded parts of specimens were obtained from the phase map images obtained by ESPI. The results confirmed that residual stresses of welded parts can be measured by ESPI.

The Measurement of Junction Depth by Scanning Electron Microscopy (전자현미경에 의한 확산 깊이 측정)

  • 허창우
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.623-626
    • /
    • 2004
  • The purpose of this paper is to determinate and to confirm p-n junction depth with nondestructive method by using electron beam. By measuring the critical short circuit current on the p-n junction which induced by electron beam and calculating generation range, the diffusion depth can be obtained. It ran be seen that values destructively measured by constant angle lapping and nondestructively by this study almost concur. As this result, it is purposed that diffusion depth of p-n junction can be easily measured by non-destruction. And this nondestructive method ran be recommended highly to the industrial analysis.

  • PDF

Vibration-Monitoring of a Real Bridge by Using a $Moir\'{e}$-Fringe-Based Fiber Optic Accelerometer

  • Kim, Dae-Hyun;Lee, Jong-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.6
    • /
    • pp.556-562
    • /
    • 2007
  • This paper presents the use of a novel fiber optic accelerometer system to monitor ambient vibration (both wind-induced one and vehicle-induced) of a real bridge structure. This sensor system integrates the $Moir\'{e}$ fringe phenomenon with fiber optics to achieve accurate and reliable measurements. A low-cost signal processing unit implements unique algorithms to further enhance the resolution and increase the dynamic bandwidth of the sensors. The fiber optic accelerometer has two major benefits in using this fiber optic accelerometer system for monitoring civil engineering structures. One is its immunity to electromagnetic (EM) interference making it suitable for difficult applications in such environments involving strong EM fields, electrical spark-induced explosion risks, and cabling problems, prohibiting the use of conventional electromagnetic accelerometers. The other is its ability to measure both low- and high-amplitude vibrations with a constantly high resolution without pre-setting a gain level, as usually required in a conventional accelerometer. The second benefit makes the sensor system particularly useful for real-time measurement of both ambient vibration (that is often used for structural health monitoring) and strong motion such as earthquake. Especially, the semi-strong motion and the small ambient one are successfully simulated and measured by using the new fiber optic accelerometer in the experiment of the structural health monitoring of a real bridge.

Fatigue Crack Localization Using Laser Nonlinear Wave Modulation Spectroscopy (LNWMS)

  • Liu, Peipei;Sohn, Hoon;Kundu, Tribikram
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.6
    • /
    • pp.419-427
    • /
    • 2014
  • Nonlinear features of ultrasonic waves are more sensitive to the presence of a fatigue crack than their linear counterparts are. For this reason, the use of nonlinear ultrasonic techniques to detect a fatigue crack at its early stage has been widely investigated. Of the different proposed techniques, laser nonlinear wave modulation spectroscopy (LNWMS) is unique because a pulse laser is used to exert a single broadband input and a noncontact measurement can be performed. Broadband excitation causes a nonlinear source to exhibit modulation at multiple spectral peaks owing to interactions among various input frequency components. A feature called maximum sideband peak count difference (MSPCD), which is extracted from the spectral plot, measures the degree of crack-induced material nonlinearity. First, the ratios of spectral peaks whose amplitudes are above a moving threshold to the total number of peaks are computed for spectral signals obtained from the pristine and the current state of a target structure. Then, the difference of these ratios are computed as a function of the moving threshold. Finally, the MSPCD is defined as the maximum difference between these ratios. The basic premise is that the MSPCD will increase as the nonlinearity of the material increases. This technique has been used successfully for localizing fatigue cracks in metallic plates.

Damage Detection in High-Rise Buildings Using Damage-Induced Rotations

  • Sung, Seung Hun;Jung, Ho Youn;Lee, Jung Hoon;Jung, Hyung Jo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.6
    • /
    • pp.447-456
    • /
    • 2014
  • In this paper, a new damage-detection method based on structural vibration is proposed. The essence of the proposed method is the detection of abrupt changes in rotation. Damage-induced rotation (DIR), which is determined from the modal flexibility of the structure, initially occurs only at a specific damaged location. Therefore, damage can be localized by evaluating abrupt changes in rotation. We conducted numerical simulations of two damage scenarios using a 10-story cantilever-type building model. Measurement noise was also considered in the simulation. We compared the sensitivity of the proposed method to localize damage to that of two conventional modal-flexibility-based damage-detection methods, i.e., uniform load surface (ULS) and ULS curvature. The proposed method was able to localize damage in both damage scenarios for cantilever structures, but the conventional methods could not.

Evaluation of thermal embrittlement in 2507 super duplex stainless steel using thermoelectric power

  • Gutierrez-Vargas, Gildardo;Ruiz, Alberto;Kim, Jin-Yeon;Lopez-Morelos, Victor H.;Ambriz, Ricardo R.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1816-1821
    • /
    • 2019
  • This research investigates the feasibility of using the thermoelectric power to monitor the thermal embrittlement in 2507 super duplex stainless steel (SDSS) exposed to a temperature between $280^{\circ}C$ and $500^{\circ}C$. It is well known that the precipitation of Cr-rich ${\alpha}^{\prime}$ phase as a result of the spinodal decomposition is the major cause of the embrittlement and the loss of corrosion resistance in this material. The specimens are thermally aged at $475^{\circ}C$ for different holding times. A series of mechanical testing including the tensile test, Vickers microhardness measurement, and Charpy impact test are conducted to determine the property changes with holding time due to the embrittlement. The mechanical strengths and ferrite hardness exhibit very similar trends. Scanning electron microscopy images of impactfractured surfaces reveal a ductile to brittle transition in the fracture mode as direct evidence of the embrittlement. It is shown that the thermoelectric power is highly sensitive to the thermal embrittlement and has an excellent linear correlation with the ferrite hardness. This paper, therefore, demonstrates that the thermoelectric power is an excellent nondestructive evaluation technique for detecting and evaluating the $475^{\circ}C$ embrittlement of field 2507 SDSS structures.

Bonding Strength Analysis of Structural Joints by using Ultrasonic Method (초음파법을 이용한 구조이음의 접합강도해석)

  • Jang Chul Sub;Oh Seung Kyu;Yi Won
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.2
    • /
    • pp.104-109
    • /
    • 2005
  • This article has been investigated the use of FFT for adhesive joints analysis between metal sheets. The method is based on the measurement of the reflection wave at the metal/adhesive interface. After describing briefly the physical aspects of the phenomenon, an index is defined to detect defective zone of the joint(both for the lack of adhesive and for insufficient adhesion): the influence of the experimental variables(variable stress...) on the measurement is discussed. By means of a control experiment it is shown that stress variation in adhesive joints are separate to be distinguished. In this paper, Nondestructive evaluation in adhesive joints are evaluated together with ultrasonic testing and finite element analysis.

J-R Curve Evaluation According to the Crack Length Measurement Techniques Under Reverse Cyclic Loading (역사이클하중하에서의 균열길이 측정법에 따른 파괴저항곡선의 평가)

  • 원종일;우흥식;석창성
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.96-101
    • /
    • 1998
  • J-R curve tests were performed on 1T compact specimens of SA516 Gr. 70 carbon steels under reverse cyclic loading. A Direct-Current Potential Drop (DCPD) method, one of the nondestructive techniques to detect flaw of structure, is being increasingly used for monitoring crack initiation and stable crack growth in typical fracture mechanics specimens for J-R testing. In many aspects this method is simpler than the unloading compliance method. The objective of this paper is to evaluate the J-R Curve according to the crack length measurement techniques under reverse cyclic loading. In order to prove the reliability and repeatability of the DCPD method, the crack length measured by using DCPD method was compared to one determined from unloading compliance. Consequently, this DCPD method correlated well with J-R curves and crack extension measurements determined from unloading compliance method.

  • PDF