• Title/Summary/Keyword: Non-operating Condition

Search Result 148, Processing Time 0.022 seconds

Effect of operating conditions on carbon corrosion in High temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) (고온형 고분자 전해질막 연료전지(HT-PEMFC) 구동환경에 따른 탄소 담지체 부식 평가)

  • Lee, Jinhee;Kim, Hansung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.89.1-89.1
    • /
    • 2011
  • The influence of potential and humidity on the electrochemical carbon corrosion in high temperature polymer electrolyte membrane fuel cells(HT-PEMFCs) is investigated by measuring $CO_2$ emission at different potentials for 30 min using on-line mass spectrometry. These results are compared with low tempterature polymer electrolyte membrane fuel cells(LT-PEMFCs) operated at lower temperature and higher humidity condition. Although the HT-PEMFC is operated at non humidified condition, the emitted $CO_2$ in the condition of HT-PEMFC is more than LT-PEMFC at the same potential in carbon corrosion test. Thus, carbon corrosion shows a stronger positive correlation with the cell temperature. In addition, the presence of a little amount of water activate electrochemical carbon corrosion considerably in HT-PEMFC. With increased carbon corrosion, changes in fuel cell electrochemical characteristics become more noticeable and thereby indicate that such corrosion considerably affects fuel cell durability.

  • PDF

Characteristic Analysis and Experimental Verification of the Axially Asymmetric Structured Outer-Rotor Type Permanent Magnet Motor

  • Seo, Myung-Ki;Lee, Tae-Yong;Park, Kyungsoo;Kim, Yong-Jae;Jung, Sang-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.898-904
    • /
    • 2016
  • In this study, we have dealt with a design characteristic of outer-rotor type permanent magnet (PM) motor applied for Engine Cooling Fan (ECF). When we design a motor with structure like this type, it is required as a requisite to consider 3-Dimensional (3-D) effect by implementing a non-linear Finite Element Analysis (FEA) due to a yoke-ceiling, which is perpendicular to the axis of rotation. We have analyzed identical models under three different conditions. The analysis has been performed through a non-linear 2-Dimensional (2-D) and 3-D FEA. Finally, the results have been compared with Back Electro-Motive Force (BEMF) value of actual motor model. As a result, a yoke-ceiling function as an additional flux path and the operating point on B-H curve of rotor material is shifted to non-saturation region relatively. Accordingly, magnetic flux linkage can be increased and motor size can be decreased under same input condition to satisfy ECF specification, such as torque.

Modeling of Left Ventricular Assist Device and Suction Detection Using Fuzzy Subtractive Clustering Method (퍼지 subtractive 클러스터링 기법을 이용한 좌심실보조장치 모델링 및 흡입현상 검출)

  • Park, Seung-Kyu;Choi, Seong-Jin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.500-506
    • /
    • 2012
  • A method to model left ventricular assist device (LVAD) and detect suction occurrence for safe LVAD operation is presented. An axial flow blood pump as a LVAD has been used to assist patient with heart problems. While an axial flow blood pump, a kind of a non-pulsatile pump, has relative advantages of small size and efficiency compared to pulsatile devices, it has a difficulty in determining a safe pump operating condition. It can show different pump operating statuses such as a normal status and a suction status whether suction occurs in left ventricle or not. A fuzzy subtractive clustering method is used to determine a model of the axial flow blood pump with this pump operating characteristic and the developed pump model can provide blood flow estimates before and after suction occurrence in left ventricle. Also, a fuzzy subtractive clustering method is utilized to develop a suction detection model which can identify whether suction occurs in left ventricle or not.

Design of Heat and Fluid Flow in Cold Container Using CFD Simulation (CFD 시뮬레이션을 이용한 냉장컨테이너의 열유동 설계)

  • Yun, Hong-Sun;Kwon, Jin-Kyung;Jeong, Hoon;Lee, Hyun-Dong;Kim, Young-Keun
    • Journal of Biosystems Engineering
    • /
    • v.33 no.6
    • /
    • pp.396-403
    • /
    • 2008
  • Because thermal non-uniformity of transported agricultural products is mainly affected by cooling air flow pattern in the cold transport equipment, the analysis and control of flowfield is key to optimization of cold transport equipment. The objectives of this study were to estimate the effects of geometric and operating parameters of cold container on the air flow and heat transfer, and find the optimum design parameters for the low temperature level and its uniformity in given cold container with CFD simulations. Existences of ducts, gaps between pallets and geometries of exit as geometric parameters and fan blowing velocity as operating parameter were investigated. CFD simulations were carried out with the FLUENT 6.2 code. The result showed that optimum design condition was bulk loading with no duct, wall exit and 8.0 m/s of fan blowing velocity.

Development of Fast-Response CO2 Analyzer and Analysis of Engine-out Emission during Cold Start of SI Engine (고속응답 CO2 분석기의 제작 및 이를 이용한 SI엔진에서의 실시간 배기가스 분석에 관한 연구)

  • Song, Hyun-Soo;Park, Kyoung-Seok;Park, Dong-Sun;Min, Kyoung-Doug
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.2
    • /
    • pp.133-140
    • /
    • 2009
  • A fast-response $CO_2$ analyzer has been developed for measuring the $CO_2$ concentration during transient condition of a SI engine. The analyzer consists of the non-dispersive infrared absorption method, electrical chopping system and water cooling system. The analyzer has good repeatability, linearity and permissible drift characteristic. Besides, it showed 18ms of a response to measure the $CO_2$ concentration. The fast-response $CO_2$ analyzer was applied to a single cylinder SI engine and the $CO_2$ emission was examined during engine start. Simultaneously, the standard exhaust gas analyzer, which has slow response time, was used for confirming the accuracy of the exhaust gas analysis using the fast-response $CO_2$ analyzer. The developed analyzer showed much faster responsive characteristic than that of a standard analyzer and made cycle by cycle exhaust gas analysis possible. The transient engine operating characteristics will be estimated from the $CO_2$ concentration of engine-out emissions and engine operating variables.

Experimental Study on the Aerodynamic Characteristics of a Two-Stage and a Counter-Rotating Axial Flow Fan (2단 축류홴과 엇회전식 축류홴의 공력특성에 관한 실험적 연구)

  • Cho, Jin-Soo;Cho, Lee-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1281-1292
    • /
    • 2001
  • Experiments were done for the comparison of performance and flow characteristics between a two -stage axial flow fan and a counter-rotating axial flow fan. Each stage of the two -stage axial flow fan used fur the present study has an eight bladed rotor and thirteen slater blades. The front and the rear rotor of the counter - rotating axial flow fan have eight blades each and are driven by coaxial counter ro latins shafts through a gearbox located between the rear rotor and the electric motor. Both of the two axial fan configurations have identical rotor blades and the same operating condition fur the one -to-one comparison of the two. Performance curves of the two configurations were obtained and compared by varying the blade pitch angles and axial gaps between the blade rows. The fan characteristic curves were obtained following the Korean Standard Testing Methods for Turbo Fans and Blowers (KS B 6311). The fa n flow characteristics were measured using a five-hole probe by a non-nulling method. The velocity profiles between the hub and tip of the fans were measured and analyzed at the particular operating condition s of peak efficiency, minimum and maximum pressure coefficients. The peak efficiency of the counter-rotating axial fan was improved about 2% respectively, compared with the two stage axial fan. At the minimum pressure coefficient point of the two stage axial fan, the fan inlet flow patterns show that axial velocity highly decreased in the vicinity of the blade tip region. Also, the reverse flow took place at the blade tip.

A Non-Linear Characteristics Modeling of High Frequency FL Lamp by Experimental Values (실험식을 이용한 고주파 형광램프의 비선형특성 모델링)

  • 함중걸;백수현
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.2
    • /
    • pp.51-55
    • /
    • 1997
  • The high frequency fluorescnet lighting systems are widely used because of their high luminous efficacy. However, the performance of the fluorescnet lamp at high frequency reveals significant changes depending upon operating frequency, lamp shape, lamp voltage and current while adapting either an electronic or an magnetic ballast. Therefore the matching between the fluorescent lamp and the ballast is the major concern in designing a lighting system. In this paper, high frequency characteristics of the FHF32W lamp is measured in a range of frequencies from 12kHz to 50kHz. And we presented a model of a fluorescnet lamp with non-linear impedance depending on the lamp current. Finally, after identifying the operating condition under negative imped¬ance behavior as lamp current changing, we proposed a method of choosing the optimal parameter of a high frequency fluorescnet lamp and the result is analyzed.

  • PDF

Development of Fast-Response $CO_2$ Analyzer and Analysis of Engine-out Emission during Transient Condition of SI engine (고속응답 $CO_2$ 분석기의 제작 및 이를 이용한 SI 엔진에서의 실시간 배기가스 분석에 관한 연구)

  • Song, Hyun-Soo;Min, Kyoung-Doug
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3079-3084
    • /
    • 2008
  • A fast response $CO_2$ analyzer has been developed for measuring the $CO_2$ concentration during transient condition of SI engine. The analyzer is based on the non-dispersive infrared absorption technique, electrical chopping system and water cooling system. The analyzer has good repeatability, linearity and permissible drift characteristic. Besides, it has 18ms with a response to measure the $CO_2$ concentration. The fast response $CO_2$ analyzer was applied to single cylinder SI engine and the $CO_2$ emission was examined during engine start. Simultaneously, the standard exhaust gas analyzer, which has slow response time, was used for considering the engine-out $CO_2$ characteristic. The developed analyzer showed much faster responsive characteristic than that of a standard analyzer and made cycle by cycle exhaust gas analysis possible. The transient engine operating characteristics will be estimated and the transient behaviors on engine-out emission and performance will be improved.

  • PDF

On determining a non-periodic preventive maintenance schedule using the failure rate threshold for a repairable system

  • Lee, Juhyun;Park, Jihyun;Ahn, Suneung
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.151-159
    • /
    • 2018
  • Maintenance activities are regarded as a key part of the repairable deteriorating system because they maintain the equipment in good condition. In practice, many maintenance policies are used in engineering fields to reduce unexpected failures and slow down the deterioration of the system. However, in traditional maintenance policies, maintenance activities have often been assumed to be performed at the same time interval, which may result in higher operational costs and more system failures. Thus, this study presents two non-periodic preventive maintenance (PM) policies for repairable deteriorating systems, employing the failure rate of the system as a conditional variable. In the proposed PM models, the failure rate of the system was restored via the failure rate reduction factors after imperfect PM activities. Operational costs were also considered, which increased along with the operating time of the system and the frequency of PM activities to reflect the deterioration process of the system. A numerical example was provided to illustrate the proposed PM policy. The results showed that PM activities performed at a low failure rate threshold slowed down the degradation of the system and thus extended the system lifetime. Moreover, when the operational cost was considered in the proposed maintenance scheme, the system replacement was more cost-effective than frequent PM activities in the severely degraded system.

A Study on the Integrity Evaluation Method of Subclad Crack under Pressurized Thermal Shock (가압열충격 사고시 클래스 하부균열 안전성 평가 방법에 관한 연구)

  • Koo, Bon-Geol;Kim, Jin-Su;Choi, Jae-Boong;Kim, Young-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.286-291
    • /
    • 2000
  • The reactor pressure vessel is usually cladded with stainless steel to prevent corrosion and radiation embrittlement, and number of subclad cracks have been found during an in-service-inspection. Therefore assessment for subclad cracks should be made for normal operating conditions and faulted conditions such as PTS. Thus, in order to find the optimum fracture assessment procedures for subclad cracks under a pressurized thermal shock condition, in this paper, three different analyses were performed, ASME Sec. XI code analysis, an LEFM(Liner elastic fracture mechanics) analysis and an EPFM(Elastic plastic fracture mechanics) analysis. The stress intensity factor and the Maximum $RT_{NDT}$ were used for characterizing. Analysis based on ASME Sec. XI code does not completely consider the actual stress distribution of the crack surface, so the resulting Maximum allowable $RT_{NDTS}$ can be non-conservative, especially for deep cracks. LEFM analysis, which does not consider elastic-plastic behavior of the clad material, is much more non-conservative than EPFM analysis. Therefore, It is necessary to perform EPFM analysis for the assessment of subclad cracks under PTS.

  • PDF