DOI QR코드

DOI QR Code

Modeling of Left Ventricular Assist Device and Suction Detection Using Fuzzy Subtractive Clustering Method

퍼지 subtractive 클러스터링 기법을 이용한 좌심실보조장치 모델링 및 흡입현상 검출

  • 박승규 (창원대학교 메카트로닉스공학부) ;
  • 최성진 (고려대학교 전자및정보공학과)
  • Received : 2012.03.19
  • Accepted : 2012.08.14
  • Published : 2012.08.25

Abstract

A method to model left ventricular assist device (LVAD) and detect suction occurrence for safe LVAD operation is presented. An axial flow blood pump as a LVAD has been used to assist patient with heart problems. While an axial flow blood pump, a kind of a non-pulsatile pump, has relative advantages of small size and efficiency compared to pulsatile devices, it has a difficulty in determining a safe pump operating condition. It can show different pump operating statuses such as a normal status and a suction status whether suction occurs in left ventricle or not. A fuzzy subtractive clustering method is used to determine a model of the axial flow blood pump with this pump operating characteristic and the developed pump model can provide blood flow estimates before and after suction occurrence in left ventricle. Also, a fuzzy subtractive clustering method is utilized to develop a suction detection model which can identify whether suction occurs in left ventricle or not.

좌심실보조장치의 모델과 안전한 장치 구동을 위한 흡입현상 검출을 위한 방법을 제안한다. 좌심실보조장치인 축류혈액펌프는 심장에 문제가 있는 환자를 보조하기 위하여 사용되어 왔다. 축류혈액펌프는 비맥동성 펌프이며, 맥동성 펌프에 비하여 작은 크기와 효율성과 같은 장점이 있으나, 안전한 펌프 운전 조건을 결정하는 데 어려움이 있다. 축류혈액펌프는 정상상태와 흡입상태와 같은 상이한 펌프 동작 상태를 가지며, 이는 좌심실에서 흡입현상 발생여부에 좌우된다. 퍼지 subtractive 클러스터링 기법을 이용하여, 이와 같은 동작 특성을 가지는 축류혈액펌프 모델을 개발하며, 개발한 펌프 모델을 이용하여 흡입현상 발생 전후의 펌프 혈류량을 추정한다. 또한 퍼지 subtractive 클러스터링 기법을 이용하여 좌심실에서 흡입현상 발생여부를 감지할 수 있는 흡입현상 검출 모델을 개발한다.

Keywords

References

  1. S. Choi, J. F. Antaki, J. R. Boston, and D. Thomas, "A sensorless approach to control of a turbodynamic left ventricular assist system," IEEE Transactions on Control Systems Technology, vol. 9, no. 3, pp. 473-482, 2001. https://doi.org/10.1109/87.918900
  2. S. Choi, J. R. Boston, and J. F. Antaki, "Hemodynamic controller for left ventricular assist device based on pulsatility ratio," Artificial Organs, vol. 31, no. 2, pp. 114-125, 2007. https://doi.org/10.1111/j.1525-1594.2007.00350.x
  3. S. Choi, J. R. Boston, D. Thomas, and J. F. Antaki, "Modeling and identification of an axial flow blood pump," Proceedings of America Control Conference, vol. 6, pp. 3714-3715, Albuquerque, NM, 1997.
  4. J. C. Benzek, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, NY, 1981.
  5. R. R. Yager and D. P. Filev, "Approximate clustering via the mountain method," IEEE Transactions on systems, man, and Cybernetics, vol. 24, no. 8, pp. 1279-1284, 1994. https://doi.org/10.1109/21.299710
  6. S. L. Chiu, "A cluster estimation method with extension to fuzzy model identification," Proceedings of The Third IEEE Conference on Fuzzy Systems, vol. 2, pp. 1240-1245, Orlando, Florida, 1994.
  7. S. L. Chiu, "Fuzzy model identification based on cluster estimation," Journal of Intelligent and Fuzzy Systems, vol. 2, pp. 267-278, 1994.
  8. K. M. Lee and K. M. Lee, "Fuzzy technique-based identification of close and distant clusters in clustering," International Journal of Fuzzy Logic and Intelligent Systems, vol. 11, no. 3, pp. 165-170, 2011. https://doi.org/10.5391/IJFIS.2011.11.3.165
  9. H. Schima, W. Trubel, A. Moritz, G. Wieselthaler, H. G. Stohr, H. Thomas, U. Losert, and E. Wolner, "Noninvasive monitoring of rotary blood pumps: necessity, possibilities, and limitations," Artificial Organs, vol. 6, pp. 195-202, 1992.
  10. S. Choi, "Suction detection in left ventricular assist system: data fusion approach," International Journal of Control, Automation, and Systems, vol. 1, no. 3, pp. 368-375, 2003.
  11. B. Kim, H. J. Kwon and S. Choi, "Use of adaptive network fuzzy inference system to predict plasma charging damage on electrical MOSFET properties," Expert Systems with Applications, vol. 36, pp. 6570-6573, 2009. https://doi.org/10.1016/j.eswa.2008.07.034