• Title/Summary/Keyword: Non-negative matrix

Search Result 139, Processing Time 0.031 seconds

Classification of General Sound with Non-negativity Constraints (비음수 제약을 통한 일반 소리 분류)

  • 조용춘;최승진;방승양
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.10
    • /
    • pp.1412-1417
    • /
    • 2004
  • Sparse coding or independent component analysis (ICA) which is a holistic representation, was successfully applied to elucidate early auditor${\gamma}$ processing and to the task of sound classification. In contrast, parts-based representation is an alternative way o) understanding object recognition in brain. In this thesis we employ the non-negative matrix factorization (NMF) which learns parts-based representation in the task of sound classification. Methods of feature extraction from the spectro-temporal sounds using the NMF in the absence or presence of noise, are explained. Experimental results show that NMF-based features improve the performance of sound classification over ICA-based features.

The Suggestion of LINF Algorithm for a Real-time Face Recognition System (실시간 얼굴인식 시스템을 위한 새로운 LINF 알고리즘의 제안)

  • Jang Hye-Kyoung;Kang Dae-Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.4 s.304
    • /
    • pp.79-86
    • /
    • 2005
  • In this paper, we propose a new LINF(Linear Independent Non-negative Factorization) algorithm for real-time face recognition systea This system greatly consists of the two parts: 1) face extraction part; 2) face recognition part. In the face extraction Part we applied subtraction image, the detection of eye and mouth region , and normalization method, and then in the face recognition Part we used LINF in extracted face candidate region images. The existing recognition system using only PCA(Principal Component Analysis) showed low recognition rates, and it was hard in the recognition system using only LDA(Linear Discriminants Analysis) to apply LDA directly when the training set is small. To overcome these shortcomings, we reduced dimension as the matrix that had non-negative value to be different from former eigenfaces and then applied LDA to the matrix in the proposed system We have experimented using self-organized DAIJFace database and ORL database offered by AT(')T laboratory in Cambridge, U.K. to evaluate the performance of the proposed system. The experimental results showed that the proposed method outperformed PCA, LDA, ICA(Independent Component Analysis) and PLMA(PCA-based LDA mixture algorithm) method within the framework of recognition accuracy.

Overlapping Sound Event Detection Using NMF with K-SVD Based Dictionary Learning (K-SVD 기반 사전 훈련과 비음수 행렬 분해 기법을 이용한 중첩음향이벤트 검출)

  • Choi, Hyeonsik;Keum, Minseok;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.234-239
    • /
    • 2015
  • Non-Negative Matrix Factorization (NMF) is a method for updating dictionary and gain in alternating manner. Due to ease of implementation and intuitive interpretation, NMF is widely used to detect and separate overlapping sound events. However, NMF that utilizes non-negativity constraints generates parts-based representation and this distinct property leads to a dictionary containing fragmented acoustic events. As a result, the presence of shared basis results in performance degradation in both separation and detection tasks of overlapping sound events. In this paper, we propose a new method that utilizes K-Singular Value Decomposition (K-SVD) based dictionary to address and mitigate the part-based representation issue during the dictionary learning step. Subsequently, we calculate the gain using NMF in sound event detection step. We evaluate and confirm that overlapping sound event detection performance of the proposed method is better than the conventional method that utilizes NMF based dictionary.

Expression of RECK and MMPs in Hepatoblastoma and Neuroblastoma and Comparative Analysis on the Tumor Metastasis

  • Xu, Meng;Wang, Hai-Feng;Zhang, Huan-Zhi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.4007-4011
    • /
    • 2015
  • Objective: To explore the expression of RECK and relevant matrix metalloproteinases (MMPs) in hepatoblastoma (HB) and neuroblastoma (NB) and their clinical significance in the tumor metastasis. Materials and Methods: Forty-five wax-stone samples of HB and 43 wax-stone samples of NB removed by surgical resection and confirmed by pathology in Linyi Yishui Central Hospital were selected. According to presence and absence of metastasis, both NB and HB samples were divided into metastatic group and non-metastatic group, namely NB metastatic group (n=28), NB non-metastatic group (n=15), HB metastatic group (n=15) and HB non-metastatic group (n=30). The expression of RECK, membrane type-1 matrix metalloproteinase (MT1-MMP) in HB tissue and RECK, MMP-14 in NB tissue was detected using immunohistochemical method, and the correlation between RECK and MT1-MMP, MMP-14 was analyzed. Results: The metastatic rate of NB was dramatically higher than that of HB, with statistical significance (P=0.003). The positive rate of RECK expression in NB group (30.2%) was slightly lower than in HB group (40.0%), but no significant difference was presented (P=0.338). The positive rate of MMPs expression in NB metastatic group was evidently higher than in HB metastatic group (P=0.024). The results of Spearman correlation analysis revealed that the expression of RECK in HB and NB tissues had a significantly-negative correlation with MT1-MMP and MMP-14, respectively (r=-0.499, P=0.012; r=-0.636, P=0.000). Conclusions: In HB and NB tissues, RECK is expressed lowly, while relevant MMPs highly, and RECK inhibits the tumor invasion and metastasis through negative regulation of relevant MMPs.

Comparisons of Linear Feature Extraction Methods (선형적 특징추출 방법의 특성 비교)

  • Oh, Sang-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.4
    • /
    • pp.121-130
    • /
    • 2009
  • In this paper, feature extraction methods, which is one field of reducing dimensions of high-dimensional data, are empirically investigated. We selected the traditional PCA(Principal Component Analysis), ICA(Independent Component Analysis), NMF(Non-negative Matrix Factorization), and sNMF(Sparse NMF) for comparisons. ICA has a similar feature with the simple cell of V1. NMF implemented a "parts-based representation in the brain" and sNMF is a improved version of NMF. In order to visually investigate the extracted features, handwritten digits are handled. Also, the extracted features are used to train multi-layer perceptrons for recognition test. The characteristic of each feature extraction method will be useful when applying feature extraction methods to many real-world problems.

Hybrid Approach of Texture and Connected Component Methods for Text Extraction in Complex Images (복잡한 영상 내의 문자영역 추출을 위한 텍스춰와 연결성분 방법의 결합)

  • 정기철
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.175-186
    • /
    • 2004
  • We present a hybrid approach of texture-based method and connected component (CC)-based method for text extraction in complex images. Two primary methods, which are mainly utilized in this area, are sequentially merged for compensating for their weak points. An automatically constructed MLP-based texture classifier can increase recall rates for complex images with small amount of user intervention and without explicit feature extraction. CC-based filtering based on the shape information using NMF enhances the precision rate without affecting overall performance. As a result, a combination of texture and CC-based methods leads to not only robust but also efficient text extraction. We also enhance the processing speed by adopting appropriate region marking methods for each input image category.

An Implementation of Story Path Recommendation System of Interactive Drama Using PCA and NMF (PCA와 NMF를 이용한 대화식 드라마의 스토리 경로 추천 시스템 구현)

  • Lee, Yeon-Chang;Jang, Jae-Hee;Kim, Myung-Gwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.95-102
    • /
    • 2012
  • Interactive drama is a story which requires user's free choice and participation. In this study, we grasp user's preference by making training data that utilize characters of interactive drama. Furthermore, we describe process of implementing systems which recommend new users path of stories that correspond with their preference. We used PCA and NMF to extract characteristic of preference. The success rate of recommending was 75% with PCA, while 62.5% with NMF.

Audio Source Separation Method based on Beamspace-domain Multichannel Non-negative Matrix Factorization, Part II: A Study on the Beamspace Transform Algorithms (빔공간-영역 다채널 비음수 행렬 분해 알고리즘을 이용한 음원 분리 기법 Part II: 빔공간-변환 기법에 대한 고찰)

  • Lee, Seok-Jin;Park, Sang-Ha;Sung, Koeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.5
    • /
    • pp.332-339
    • /
    • 2012
  • Beamspace transform algorithm transforms spatial-domain data - such as x, y, z dimension - into incidence-angle-domain data, which is called beamspace-domain data. The beamspace transform method is generally used in source localization and tracking, and adaptive beamforming problem. When the beamspace transform method is used in multichannel audio source separation, the inverse beamspace transform is also important because the source image have to be reconstructed. This paper studies the beamspace transform and inverse transform algorithms for multichannel audio source separation system, especially for the beamspace-domain multichannel NMF algorithm.

Query-Based Summarization using Semantic Feature Matrix and Semantic Variable Matrix (의미 특징 행렬과 의미 가변행렬을 이용한 질의 기반의 문서 요약)

  • Park, Sun
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.4
    • /
    • pp.372-377
    • /
    • 2008
  • This paper proposes a new query-based document summarization method using the semantic feature matrix and the semantic variable matrix. The proposed method doesn't need the training phase using training data comprising queries and query specific documents. And it exactly summarizes documents for the given query by using semantic features and semantic variables that is better at identifying sub-topics of document. Because the NMF have a great power to naturally extract semantic features representing the inherent structure of a document. The experimental results show that the proposed method achieves better performance than other methods.

  • PDF