• Title/Summary/Keyword: Non-linear integral

Search Result 128, Processing Time 0.026 seconds

Effects of Non-Absorbable Gases on the Absorption Process of Aqueous LiBr Solution Film in a Vertical Tube (II) (수직관내 리튬브로마이드 수용액막의 흡수과정에 대한 비흡수가스의 영향)

  • Kim, Byeong-Ju;Lee, Chan-U
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.499-509
    • /
    • 1998
  • In the absorption process of water vapor in a liquid film, the composition of the gas phase, in which a non-absorbable gas is combined with the absorbate influences the transport characteristics remarkably. In the present study, the absorption processes of water vapor into aqueous solution of lithium bromide in the presence of non-absorbable gases were investigated analytically. The continuity, momentum, energy and diffusion equations for the solution film and gas phase were formulated in integral forms and solved numerically. It was found that the mass transfer resistance in gas phase increased with the concentration of non-absorbable gas. However the primary resistance to mass transfer was in the liquid phase. As the concentration of non-absorbable gas in the absorbate increased, the liquid-vapor interfacial temperature and concentration of absorbate in solution decreased, which resulted in the reduction of absorption rate. The reduction of mass transfer rate was found to be significant for the addition of a small amount of non-absorbable gas to the pure vapor, especially at the outlet of an absorber where non-absorbable gases accumulated. At higher non-absorbable gas concentration, the decrease of absorption flux was almost linear to the volumetric concentration of non-absorbable gas.

One to one Resonance on the Rectangular Cantilever Beam (사각형 외팔보에서의 일대일 공진)

  • Kim, Myoung-Gu;Pak, Chul-Hui;Cho, Chong-Du;Lee, Heung-Shik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.424-429
    • /
    • 2005
  • In this paper, the response characteristics of one to one resonance on the rectangular cantilever beam in which basic harmonic excitations are applied by nonlinear coupled differential integral equations are studied. This equations have 3-dimensional non-linearity of nonlinear inertia and nonlinear curvature. Galerkin and multi scale methods are used for theoretical approach to one to one internal resonance. Nonlinear response characteristics of 1st, 2nd, 3rd modes are measured from the experiment for basic harmonic excitation. From the experimental result, geometrical terms of nonlinearity display light spring effect and these terms play an important role in the response characteristics of low frequency modes. Dynamic behaviors in the out of plane are also studied.

  • PDF

EXISTENCE OF COINCIDENCE POINT UNDER GENERALIZED NONLINEAR CONTRACTION WITH APPLICATIONS

  • Deshpande, Bhavana;Handa, Amrish;Thoker, Shamim Ahmad
    • East Asian mathematical journal
    • /
    • v.32 no.3
    • /
    • pp.333-354
    • /
    • 2016
  • We present coincidence point theorem for g-non-decreasing mappings satisfying generalized nonlinear contraction on partially ordered metric spaces. We show how multidimensional results can be seen as simple consequences of our unidimensional coincidence point theorem. We also obtain the coupled coincidence point theorem for generalized compatible pair of mappings $F,G:X^2{\rightarrow}X$ by using obtained coincidence point results. Furthermore, an example and an application to integral equation are also given to show the usability of obtained results. Our results generalize, modify, improve and sharpen several well-known results.

Non-statistical Stochastic Finite Element Method Employing Higher Order Stochastic Field Function (고차의 추계장 함수와 이를 이용한 비통계학적 추계론적 유한요소해석)

  • Noh, Hyuk-Chun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.383-390
    • /
    • 2006
  • In this paper, a stochastic field that is compatible with Monte Carlo simulation is suggested for an expansion-based stochastic analysis scheme of weighted integral method. Through investigation on the way of affection of stochastic field function on the displacement vector in the series expansion scheme, it is noticed that the stochastic field adopted in the weighted integral method is not compatible with that appears in the Monte Carlo simulation. As generally recognized in the field of stochastic mechanics, the response variability is not a linear function of the coefficient of variation of stochastic field but a nonlinear function with increasing variability as the intensity of uncertainty is increased. Employing the stochastic field suggested in this study, the response variability evaluated by means of the weighted integral scheme is reproduced with high precision even for uncertain fields with moderately large coefficient of variation. Besides, despite the fact that only the first-order expansion is employed, an outstanding agreement between the results of expansion-based weighted integral method and Monte Carlo simulation is achieved.

Detection of Precise Crop Locations under Vinyl Mulch using Non-integral Moving Average Applied to Thermal Distribution

  • Cho, Yongjin;Yun, Yeji;Lee, Kyou-Seung;Lee, Dong-Hoon
    • Journal of Biosystems Engineering
    • /
    • v.42 no.2
    • /
    • pp.117-125
    • /
    • 2017
  • Purpose: Damage to pulse crops by wild birds is a serious problem. The damage is to such an extent that the rate of damage during the period between seeding and cotyledon stages reaches 54.6% on an average. In this study, a crop-position detection method was developed wherein infrared (IR) sensors were used to determine the cotyledon position under a vinyl mulch. Methods: IR sensors that helped measure the temperature were used to locate the cotyledons below the vinyl mulch. A single IR sensor module was installed at three locations of the crops (peanut, red lettuce, and crown daisy) in the cotyledon stage. The representative thermal response of a $16{\times}4$ pixel area was detected using this sensor in the case where the distance from the target was 25 cm. A spatial image was applied to the two-dimensional temperature distribution using a non-integral moving-average method. The collected data were first processed by taking the moving average via interpolation to determine the frame where the variance was the lowest for a resolution unit of 1.02 cm. Results: The temperature distribution was plotted corresponding to a distance of 10 cm between the crops. A clear leaf pattern of the crop was visually confirmed. However, the temperature distribution after the normalization was unclear. The image conversion and frequency-conversion graphs were obtained based on the moving average by averaging the points corresponding to a frequency of 40 Hz for 8 pixels. The most optimized resolutions at locations 1, 2, and 3 were found on 3.4, 4.1, and 5.6 Pixels, respectively. Conclusions: In this study, to solve the problem of damage caused by birds to crops in the cotyledon stage after seeding, the vinyl mulch is punched after seeding. The crops in the cotyledon stage could be accurately located using the proposed method. By conducting the experiments using the single IR sensor and a sliding mechanical device with the help of a non-integral interpolation method, the crops in the cotyledon stage could be precisely located.

Observer-based Feedback Controller Design for Robust Tracking of Discrete-time Polytopic Uncertain LTI Systems

  • Oh, Sangrok;Kim, Jung-Su;Shim, Hyungbo
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2427-2433
    • /
    • 2015
  • This paper presents an observer-based robust controller for constant reference tracking of linear time invariant systems with polytopic model uncertainties. To this end, this paper not only designs a robust integral controller gain but also suggests how to determine the robust observer gain and the observer model used in the observer. Since the observer model selection is not obvious due to the polytopic uncertainties, particular attention needs to be paid to that. This paper computes the robust controller and observer gains first. Then, the observer model is selected in a way that the whole closedloop is stable and LMIs are used in the middle of choosing the gains and observer model. Simulation examples show that the proposed observer-based feedback control successfully achieves robust reference tracking.

Mode III SIFs for interface cracks in an FGM coating-substrate system

  • Monfared, Mojtaba Mahmoudi
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.71-79
    • /
    • 2017
  • In this study, interaction of several interface cracks located between a functionally graded material (FGM) layer and an elastic layer under anti-plane deformation based on the distributed dislocation technique (DDT) is analyzed. The variation of the shear modulus of the functionally graded coating is modeled by an exponential and linear function along the thickness of the layer. The complex Fourier transform is applied to governing equation to derive a system of singular integral equations with Cauchy type kernel. These equations are solved by a numerical method to obtain the stress intensity factors (SIFs) at the crack tips. The effects of non-homogeneity parameters for exponentially and linearly form of shear modulus, the thickness of the layers and the length of crack on the SIFs for several interface cracks are investigated. The results reveal that the magnitude of SIFs decrease with increasing of FG parameter and thickness of FGM layer. The values of SIFs for FGM layer with exponential form is less than the linear form.

A PDFF Position Control using Non-linear Compensator (비선형 보상기를 이용한 PDFF 위치제어)

  • 안영주;이형기
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.4
    • /
    • pp.49-56
    • /
    • 2002
  • In this paper, a new controller using non-linear compensator for position control is presented, which we can satisfy the given specifications more easily than the existing one. We suggest an improved PDFE(Integral with Proportional-Derivative-plus-Feedforward) controller by which both phase margin and bandwidth are controlled simultaneously in the controller design problem. Replacing the feed forward term in the PDFF system with a CDIDF(Complex Dual Input Describing Function), the desired phase margin is obtained without diminishing the bandwidth of the closed loop system. The effectiveness of the proposed controller is confirmed through simulations and experiments. As The results of these, we know that it is possible to adjust overall specifications by varying parameters in the improved PDFF system.

  • PDF

Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model

  • Bellal, Moussa;Hebali, Habib;Heireche, Houari;Bousahla, Abdelmoumen Anis;Tounsi, Abdeldjebbar;Bourada, Fouad;Mahmoud, S.R.;Bedia, E.A. Adda;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.643-655
    • /
    • 2020
  • In the present work, the buckling behavior of a single-layered graphene sheet (SLGS) embedded in visco-Pasternak's medium is studied using nonlocal four-unknown integral model. This model has a displacement field with integral terms which includes the effect of transverse shear deformation without using shear correction factors. The visco-Pasternak's medium is introduced by considering the damping effect to the classical foundation model which modeled by the linear Winkler's coefficient and Pasternak's (shear) foundation coefficient. The SLGS under consideration is subjected to compressive in- plane edge loads per unit length. The influences of many parameters such as nonlocal parameter, geometric ratio, the visco-Pasternak's coefficients, damping parameter, and mode numbers on the buckling response of the SLGSs are studied and discussed.

Elastic solutions for shallow tunnels excavated under non-axisymmetric displacement boundary conditions on a vertical surface

  • Wang, Ling;Zou, Jin-Feng;Yang, Tao;Wang, Feng
    • Geomechanics and Engineering
    • /
    • v.19 no.3
    • /
    • pp.201-215
    • /
    • 2019
  • A new approach of analyzing the displacements and stress of the surrounding rock for shallow tunnels excavated under non-axisymmetric displacement boundary conditions on a vertical surface is investigated in this study. In the proposed approach, by using a virtual image technique, the shear stress of the vertical ground surface is revised to be zero, and elastic solutions of the surrounding rock are obtained before stress revision. To revise the vertical normal stress and shear stress of horizontal ground surface generated by the combined action of the actual and image sinks, the harmonic functions and corresponding stress function solutions were adopted. Based on the Boussinesq's solutions and integral method, the horizontal normal stress of the vertical ground surface is revised to be zero. Based on the linear superposition principle, the final solution of the displacements and stress were proposed by superimposing the solutions obtained by the virtual image technique and the stress revision on the horizontal and vertical ground surfaces. Furthermore, the ground settlements and lateral displacements of the horizontal and vertical ground surfaces are derived by the proposed approach. The proposed approach was well verified by comparing with the numerical method. The discussion based on the proposed approach in the manuscript shows that smaller horizontal ground settlements will be induced by lower tunnel buried depths and smaller limb distances. The proposed approach for the displacement and stress of the surrounding rocks can provide some practical information about the surrounding rock stability analysis of shallow tunnels excavated under non-axisymmetric displacement boundary conditions on a vertical surface.