• Title/Summary/Keyword: Non-linear filtering

Search Result 58, Processing Time 0.027 seconds

A case study on an optimal analysis technique of primary measurements for safety management of fill dam (필댐의 안전관리를 위한 주요 계측 데이터의 최적 분석기법에 대한 사례 연구)

  • Jeon, Hyeoncheol;Yun, Seong-Kyu;Kim, Jiseong;Im, En-Sang;Kang, Gichun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1155-1166
    • /
    • 2021
  • In this study, statistical analysis was performed to suggest the optimal analysis techniques for the main measuring instruments of the fill dam, such as seepage, crest settlement, and porewater pressure gauge. In addition, correlation analysis with water level and rainfall data was performed. Based on the results of descriptive statistical analysis for each instrument, porewater pressure gauges could be classified into 3 groups or 2 groups through principal component analysis, In the case of the group having a high correlation with the water level instrument, the correlation between the gauges was also large. In the case of seepage instrument, the distribution showed an extremely asymmetric distribution, so for quantitative analysis, the average seepage during non-precipitation and precipitation could be estimated through decision tree analysis. In the case of the crest settlement instrument, the correlation analysis showed that the correlation between the gauges was large, but the relationship with the water level instrument did not show a significant linear relationship, so EMD analysis was performed to analyze it in more detail. It is judged that principal component analysis, decision tree analysis, and data filtering method can be applied to analyze the behavior of pore water pressure meters, seepage, and crest settlement instrument as major measurement items of fill dam.

Phase Representation with Linearity for CORDIC based Frequency Synchronization in OFDM Receivers (OFDM 수신기의 CORDIC 기반 주파수 동기를 위한 선형적인 위상 표현 방법)

  • Kim, See-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.3
    • /
    • pp.81-86
    • /
    • 2010
  • Since CORDIC (COordinate Rotation DIgital Computer) is able to carry out the phase operation, such as vector to phase conversion or rotation of vectors, with adders and shifters, it is well suited for the design of the frequency synchronization unit in OFDM receivers. It is not easy, however, to fully utilize the CORDIC in the OFDM demodulator because of the non-linear characteristics of the direction sequence (DS), which is the representation of the phase in CORDIC. In this paper a new representation method is proposed to linearize the direction sequence approximately. The maximum phase error of the linearized binary direction sequence (LBDS) is also discussed. For the purpose of designing the hardware, the architectures for the binary DS (BDS) to LBDS converter and the LBDS to BDS inverse converter are illustrated. Adopting LBDS, the overall frequency synchronization hardware for OFDM receivers can be implemented fully utilizing CORDIC and general arithmetic operators, such as adders and multipliers, for the phase estimation, loop filtering of the frequency offset, derotation for the frequency offset correction. An example of the design of 22 bit LBDS for the T-DMB demodulator is also presented.

Curved Feature Modeling and Accuracy Analysis Using Point Cloud Data (점군집 데이터를 이용한 곡면객체 모델링 및 정확도 분석)

  • Lee, Dae Geon;Yoo, Eun Jin;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.3
    • /
    • pp.243-251
    • /
    • 2016
  • LiDAR data processing steps include noise removal, filtering, classification, segmentation, shape recognition, modeling, and quality assessment. This paper focuses on modeling and accuracy evaluation of 3D objects with curved surfaces. The appropriate modeling functions were determined by analyzing surface patch shape. Existing methods for modeling curved surface features require linearization, initial approximation, and iteration of the non-linear functions. However, proposed method could directly estimate the unknown parameters of the modeling functions. The results demonstrate feasibility of the proposed method. The proposed method was applied to the simulated and real building data of hemi-spherical and semi-cylindrical surfaces. The parameters and accuracy of the modeling functions were estimated. It is expected that the proposed method would contribute to automatic modeling of various objects.

DFT-Based Channel Estimation with Channel Response Mirroring for MIMO OFDM Systems (MIMO OFDM 시스템을 위한 채널 응답 미러링을 이용한 DFT기반 채널 추정 기법)

  • Lee, JongHyup;Kang, Sungjin;Noh, Wooyoung;Oh, Jimyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.655-663
    • /
    • 2021
  • In this paper, DFT-Based channel estimation with channel response mirroring is proposed and analyzed. In General, pilot symbols for channel estimation in MIMO(Multi-Input Multi-Output) OFDM(Orthogonal Frequency-Division Multiplexing) Systems have a diamond shape in the time-frequency plane. An interpolation technique to estimate the channel response of sub-carriers between reference symbols is needed. Various interpolation techniques such as linear interpolation, low-pass filtering interpolation, cubic interpolation and DFT interpolation are employed to estimate the non-pilot sub-carriers. In this paper, we investigate the conventional DFT-based channel estimation for noise reduction and channel response interpolation. The conventional method has performance degradation by distortion called "edge effect" or "border effect". In order to mitigate the distortion, we propose an improved DFT-based channel estimation with channel response mirroring. This technique can efficiently mitigate the distortion caused by the DFT of channel response discontinuity. Simulation results show that the proposed method has better performance than the conventional DFT-based channel estimation in terms of MSE.

Fast Detection of Power Lines Using LIDAR for Flight Obstacle Avoidance and Its Applicability Analysis (비행장애물 회피를 위한 라이다 기반 송전선 고속탐지 및 적용가능성 분석)

  • Lee, Mijin;Lee, Impyeong
    • Spatial Information Research
    • /
    • v.22 no.1
    • /
    • pp.75-84
    • /
    • 2014
  • Power lines are one of the main obstacles causing an aircraft crash and thus their realtime detection is significantly important during flight. To avoid such flight obstacles, the use of LIDAR has been recently increasing thanks to its advantages that it is less sensitive to weather conditions and can operate in day and night. In this study, we suggest a fast method to detect power lines from LIDAR data for flight obstacle avoidance. The proposed method first extracts non-ground points by eliminating the points reflected from ground surfaces using a filtering process. Second, we calculate the eigenvalues for the covariance matrix from the coordinates of the generated non-ground points and obtain the ratio of eigenvalues. Based on the ratio of eigenvalues, we can classify the points on a linear structure. Finally, among them, we select the points forming horizontally long straight as power-line points. To verify the algorithm, we used both real and simulated data as the input data. From the experimental results, it is shown that the average detection rate and time are 80% and 0.2 second, respectively. If we would improve the method based on the experiment results from the various flight scenario, it will be effectively utilized for a flight obstacle avoidance system.

A Comparison on the Positioning Accuracy from Different Filtering Strategies in IMU/Ranging System (IMU/Range 시스템의 필터링기법별 위치정확도 비교 연구)

  • Kwon, Jay-Hyoun;Lee, Jong-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.3
    • /
    • pp.263-273
    • /
    • 2008
  • The precision of sensors' position is particularly important in the application of road extraction or digital map generation. In general, the various ranging solution systems such as GPS, Total Station, and Laser Ranger have been employed for the position of the sensor. Basically, the ranging solution system has problems that the signal may be blocked or degraded by various environmental circumstances and has low temporal resolution. To overcome those limitations a IMU/range integrated system could be introduced. In this paper, after pointing out the limitation of extended Kalman filter which has been used for workhorse in navigation and geodetic community, the two sampling based nonlinear filters which are sigma point Kalman filter using nonlinear transformation and carefully chosen sigma points and particle filter using the non-gaussian assumption are implemented and compared with extended Kalman filter in a simulation test. For the ranging solution system, the GPS and Total station was selected and the three levels of IMUs(IMU400C, HG1700, LN100) are chosen for the simulation. For all ranging solution system and IMUs the sampling based nonlinear filter yield improved position result and it is more noticeable that the superiority of nonlinear filter in low temporal resolution such as 5 sec. Therefore, it is recommended to apply non-linear filter to determine the sensor's position with low degree position sensors.

Development for Fishing Gear and Method of the Non-Float Midwater Pair Trawl Net (III) - Opening Efficiency of the Model Net attaching the Kite - (무부자 쌍끌이 중층망 어구어법의 개발 (III) - 카이트를 부착한 모형어구의 전개성능 -)

  • 유제범;이주희;이춘우;권병국;김정문
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.3
    • /
    • pp.197-210
    • /
    • 2003
  • The non-float midwater pair trawl was effective in the mouth opening and control of the working depth in midwater and bottom. In contrast, we confirmed that it was difficult to keep the net at surface above 30 m of the depth by means of the full scale experiment in the field and the model test in the circulation water channel. To solve this problem, the kites were attached to the head rope of the non-float midwater pair trawl. In this study, four kinds of the model experiments were carried out with the purpose of applying the kite to the korean midwater pair trawl. The results obtained can be summarized as follows: 1. The working depth of the non-float midwater pair trawl with the kite was shallower than that of the proto type and non-float type. The working depth of the kite type was approximately 20m with 2 kites and about 5m with 4 kites under 4.0 knot. The working depth was almost constant but the depth of the head rope sank approximately 15m and 10m according to the increase in the front weight and the wing-end weight, respectively. The changing aspect of the working depth was constant, but the depth of the head rope sank approximately 22m according to the increase in the lower warp length (dL). 2. The hydrodynamic resistance of the kite type was almost increased in a linear form in accordance with the flow speed increase from 2.0 to 5.0 knot. The increasing grate of the hydrodynamic resistance tended to increase in accordance with the increase in flow speed. The hydrodynamic resistance of the kite type was larger approximately 5~10 ton larger than that of the non-float type and the proto type. The hydrodynamic resistance of the kite type increased approximately 3ton with the changing of the front weight from 1.40 to 3.50 ton and approximately 4 ton with the changing of the wing-end weight from 0 to 1.11 ton and approximately 5.5 ton with the changing lower warp length (dL) from 0 to 40 m, respectively. 3. The net height of the kite type was increased approximately 10 m with the change in the kite area from $2,270mm^2$ to 4,540 $\textrm{mm}^2$. The net height of the kite type was aproximately 50 m and 30 m larger than that of the proto type and the non-float type, respectively. The changed aspect of the net width was approximately 5m with the variation of the flow speed from 2.0 to 5.0 knot. 4. The filtering volume of the kite type was larger than that of the proto type and the non-float type by 28%, 34% at 2.0 knot of the flow speed and 42%, 41% at 3.0 knot, and 62%, 45% at 4.0 knot, and 74%, 54% at 5.0knot, respectively. The optimal towing speed was approximately 3.0 knot for the proto type and was over 4.0 knot for the non-float type, and the optimal towing speed reached 5.0 knot for the kite type. 5. The opening efficiency of the kite type was approximately 50% and 25% larger than that of the proto type and the non-float type, respectively.

IP Modeling and Inversion Using Complex Resistivity (복소 전기비저항을 이용한 IP 탐사 모델링 및 역산)

  • Son, Jeong-Sul;Kim, Junhg-Ho;Yi, Myeong-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.2
    • /
    • pp.138-146
    • /
    • 2007
  • This paper describes 2.5D induced polarization (IP) modeling and inversion algorithms using complex resistivity. The complex resistivity method has merits for acquiring more valuable information about hydraulic parameters and pore fluid than the conventional IP methods. The IP modeling and inversion algorithms are developed by allowing complex arithmetic in existing DC modeling and inversion algorithms. The IP modeling and inversion algorithms use a 2.5D DC finite-element algorithm and a damped least-squares method with smoothness constraints, respectively. The accuracy of the IP modeling algorithm is verified by comparing its responses of two synthetic models with two different approaches: linear filtering for a three-layer model and an integral equation method for a 3D model. Results from these methods are well matched to each other. The inversion algorithm is validated by a synthetic example which has two anomalous bodies, one is more conductive but non-polarizable than the background, and the other is polarizable but has the same resistivity as the background. From the inverted section, we can cleary identify each anomalous body with different locations. Furthermore, in order to verify its efficiency to the real filed example, we apply the inversion algorithm to another three-layer model which includes phase anomaly in the second layer.