• 제목/요약/키워드: Non-linear differential equations

검색결과 188건 처리시간 0.027초

The G. D. Q. method for the harmonic dynamic analysis of rotational shell structural elements

  • Viola, Erasmo;Artioli, Edoardo
    • Structural Engineering and Mechanics
    • /
    • 제17권6호
    • /
    • pp.789-817
    • /
    • 2004
  • This paper deals with the modal analysis of rotational shell structures by means of the numerical solution technique known as the Generalized Differential Quadrature (G. D. Q.) method. The treatment is conducted within the Reissner first order shear deformation theory (F. S. D. T.) for linearly elastic isotropic shells. Starting from a non-linear formulation, the compatibility equations via Principle of Virtual Works are obtained, for the general shell structure, given the internal equilibrium equations in terms of stress resultants and couples. These equations are subsequently linearized and specialized for the rotational geometry, expanding all problem variables in a partial Fourier series, with respect to the longitudinal coordinate. The procedure leads to the fundamental system of dynamic equilibrium equations in terms of the reference surface kinematic harmonic components. Finally, a one-dimensional problem, by means of a set of five ordinary differential equations, in which the only spatial coordinate appearing is the one along meridians, is obtained. This can be conveniently solved using an appropriate G. D. Q. method in meridional direction, yielding accurate results with an extremely low computational cost and not using the so-called "delta-point" technique.

Post-buckling analysis of piles by perturbation method

  • Zhao, M.H.;He, W.;Li, Q.S.
    • Structural Engineering and Mechanics
    • /
    • 제35권2호
    • /
    • pp.191-203
    • /
    • 2010
  • To investigate the critical buckling load and post-buckling behavior of an axially loaded pile entirely embedded in soil, the non-linear large deflection differential equation for a pinned pile, based on the Winkler-model and the discretionary distribution function of the foundation coefficient along pile shaft, was established by energy method. Assuming that the deflection function was a power series of some perturbation parameter according to the boundary condition and load in the pile, the non-linear large deflection differential equation was transformed to a series of linear differential equations by using perturbation approach. By taking the perturbation parameter at middle deflection, the higher-order asymptotic solution of load-deflection was then found. Effect of ratios of soil depth to pile length, and ratios of pile stiffness to soil stiffness on the critical buckling load and performance of piles (entirely embedded and partially embedded) after flexural buckling were analyzed. Results show that the buckling load capacity increases as the ratios of pile stiffness to soil stiffness increasing. The pile performance will be more stable when ratios of soil depth to pile length, and soil stiffness to pile stiffness decrease.

AN UNSTRUCTURED MESH FINITE VOLUME METHOD FOR MODELLING SALTWATER INTRUSION INTO COASTAL AQUIFERS

  • Liu, F.;Turner, I.;Anh, V.
    • Journal of applied mathematics & informatics
    • /
    • 제9권2호
    • /
    • pp.561-577
    • /
    • 2002
  • In this paper, a two-dimensional finite volume unstructured mesh method (FVUM) based on a triangular background interpolation mesh is developed for analysing the evolution of the saltwater intrusion into single and multiple coastal aquifer systems. The model formulation consists of a ground-water flow equation and a salt transport equation. These coupled and non-linear partial differential equations are transformed by FVUM into a system of differential/algebraic equations, which is solved using backward differentiation formulas of order one through five. Simulation results are compared with previously published solutions where good agreement is observed.

조합하중을 받는 일정체적 캔틸레버 기둥의 정확탄성곡선 (Elastica of Cantilever Column with Constant Volume Subjected to Combined Loads)

  • 이병구;이광범;윤희민
    • 한국전산구조공학회논문집
    • /
    • 제20권5호
    • /
    • pp.581-592
    • /
    • 2007
  • 이 논문은 일정체적 캔틸레버 기둥의 정확탄성곡선(elastica)에 관한 연구이다. 기둥의 자유단에 압축하중과 모멘트 하중으로 구성되는 조합하중이 작용하는 캔틸레버 기둥의 정확탄성곡선을 지배하는 비선형 미분방정식과 경계조건을 유도하였다. 미분방정식에는 전단변형효과를 고려하였다. 기둥의 변단면으로는 정다각형 단면을 갖는 선형, 포물선형 및 정현의 변단면을 채택하였다. 기둥의 정확탄성곡선을 해석하기 위하여 유도된 미분방정식을 수치해석하였다. 수치해석의 결과를 이용하여 기둥의 무차원 변수들이 정확탄성곡선에 미치는 영향을 분석하였다. 실험실 규모의 실험을 실시하여 이 연구에서 얻어진 수치해석의 결과를 검증하였다.

A ROBUST NUMERICAL TECHNIQUE FOR SOLVING NON-LINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS WITH BOUNDARY LAYER

  • Cakir, Firat;Cakir, Musa;Cakir, Hayriye Guckir
    • 대한수학회논문집
    • /
    • 제37권3호
    • /
    • pp.939-955
    • /
    • 2022
  • In this paper, we study a first-order non-linear singularly perturbed Volterra integro-differential equation (SPVIDE). We discretize the problem by a uniform difference scheme on a Bakhvalov-Shishkin mesh. The scheme is constructed by the method of integral identities with exponential basis functions and integral terms are handled with interpolating quadrature rules with remainder terms. An effective quasi-linearization technique is employed for the algorithm. We establish the error estimates and demonstrate that the scheme on Bakhvalov-Shishkin mesh is O(N-1) uniformly convergent, where N is the mesh parameter. The numerical results on a couple of examples are also provided to confirm the theoretical analysis.

Flapwise and non-local bending vibration of the rotating beams

  • Mohammadnejad, Mehrdad;Saffari, Hamed
    • Structural Engineering and Mechanics
    • /
    • 제72권2호
    • /
    • pp.229-244
    • /
    • 2019
  • Weak form integral equations are developed to investigate the flapwise bending vibration of the rotating beams. Rayleigh and Eringen nonlocal elasticity theories are used to investigate the rotatory inertia and Size-dependency effects on the flapwise bending vibration of the rotating cantilever beams, respectively. Through repetitive integrations, the governing partial differential equations are converted into weak form integral equations. The novelty of the presented approach is the approximation of the mode shape function by a power series which converts the equations into solvable one. Substitution of the power series into weak form integral equations results in a system of linear algebraic equations. The natural frequencies are determined by calculation of the non-trivial solution for resulting system of equations. Accuracy of the proposed method is verified through several numerical examples, in which the influence of the geometry properties, rotatory inertia, rotational speed, taper ratio and size-dependency are investigated on the natural frequencies of the rotating beam. Application of the weak form integral equations has made the solution simpler and shorter in the mathematical process. Presented relations can be used to obtain a close-form solution for quick calculation of the first five natural frequencies of the beams with flapwise vibration and non-local effects. The analysis results are compared with those obtained from other available published references.

보강재 보강 형태에 따른 특별직교 이방성 적층복합판의 고유진동수에 대한 종방향 모멘트 무시효과 (The Effect of Neglecting the Longitudinal Moment Terms on the Natural Frequency of Laminated Plates with Increasing Aspect Ratio)

  • 김덕현;김경진;이정호;박정호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.109-116
    • /
    • 1998
  • The method of vibration analysis used is the one developed by the senior author. He developed and reported, in 1974, a simple but exact method of calculating the natural frequency of beam and tower structures with irregular cross-sections and attached mass/masses. Since 1989, this method has been extended to two-dimensional problems with several types of given conditions and has been reported at several international conferences. This method uses the deflection influence surfaces. The finite difference method is used for this purpose, in this paper. In order to reduce the pivotal points required, the three simultaneous partial differential equations of equilibrium with three dependent variables, w, M$_{x}$, and $M_{y}$, are used instead of the one forth order partial differential equation. By neglecting the M$_{x}$ terms, the size of the matrices needed to solve the resulting linear equations are reduced to two thirds of the "non-modified" equations.tions.

  • PDF

유체를 이송하는 양단 고정된 반원관의 면내/면외 진동 특성 (Vibration Characteristics of a Semi-circular Pipe Conveying Fluid with Both Ends Clamped)

  • 정두한;정진태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.252-257
    • /
    • 2004
  • Free vibration of a semi-circular pipe conveying fluid is analyzed when the pipe is clamped at both ends. To consider the geometric non-linearity, this study adopts the Lagrange strain theory and the extensibility of the pipe. By using the extended Hamilton principle, the non-linear partial differential equations are derived, which are coupled to the in-plane and out-of\ulcornerplant: motions. To investigate the vibration characteristics of the system, the discretized equations of motion are derived from the Galerkin method. The natural frequencies are computed from the linearized equations of motion in the neighborhood of the equilibrium position. From the results. the natural frequencies for the in-plane and out-of-plane motions are vary with the flow velocity. However, no instability occurs the semi-circular pipe with both ends clamped, when taking into account the geometric non-linearity explained by the Lagrange strain theory.

  • PDF

Numerical simulation of non-isothermal flow in oil reservoirs using a two-equation model

  • dos Santos Heringer, Juan Diego;de Souza Debossam, Joao Gabriel;de Souza, Grazione;Souto, Helio Pedro Amaral
    • Coupled systems mechanics
    • /
    • 제8권2호
    • /
    • pp.147-168
    • /
    • 2019
  • This work aims to simulate three-dimensional heavy oil flow in a reservoir with heater-wells. Mass, momentum and energy balances, as well as correlations for rock and fluid properties, are used to obtain non-linear partial differential equations for the fluid pressure and temperature, and for the rock temperature. Heat transfer is simulated using a two-equation model that is more appropriate when fluid and rock have very different thermal properties, and we also perform comparisons between one- and two-equation models. The governing equations are discretized using the Finite Volume Method. For the numerical solution, we apply a linearization and an operator splitting. As a consequence, three algebraic subsystems of linearized equations are solved using the Conjugate Gradient Method. The results obtained show the suitability of the numerical method and the technical feasibility of heating the reservoir with static equipment.

EXISTENCE OF SOLUTION OF FINITE SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS

  • Ohm, Mi-Ray
    • 대한수학회보
    • /
    • 제31권2호
    • /
    • pp.309-318
    • /
    • 1994
  • The approach presented in this paper is based on the transformation of the Stefan problem in one space dimension to an initial-boundary value problem for the heat equation in a fixed domain. Of course, the problem is non-linear. The finite element approximation adopted here is the standared continuous Galerkin method in time. In this paper, only the regular case is discussed. This means the error analysis is based on the assumption that the solution is sufficiently smooth. The aim of this paper is the existence of the solution in a finite Galerkin system of ordinary equations.

  • PDF