• 제목/요약/키워드: Non-linear Numerical model

검색결과 423건 처리시간 0.023초

Analysis of thermo-rheologically complex structures with geometrical nonlinearity

  • Mahmoud, Fatin F.;El-Shafei, Ahmed G.;Attia, Mohamed A.
    • Structural Engineering and Mechanics
    • /
    • 제47권1호
    • /
    • pp.27-44
    • /
    • 2013
  • A finite element computational procedure for the accurate analysis of quasistatic thermorheological complex structures response is developed. The geometrical nonlinearity, arising from large displacements and rotations (but small strains), is accounted for by the total Lagrangian description of motion. The Schapery's nonlinear single-integral viscoelastic constitutive model is modified for a time-stress-temperature-dependent behavior. The nonlinear thermo-viscoelastic constitutive equations are incrementalized leading to a recursive relationship and thereby the resulting finite element equations necessitate data storage from the previous time step only, and not the entire deformation history. The Newton-Raphson iterative scheme is employed to obtain a converged solution for the non-linear finite element equations. The developed numerical model is verified with the previously published works and a good agreement with them is found. The applicability of the developed model is demonstrated by analyzing two examples with different thermal/mechanical loading histories.

Hydraulic fracture simulation of concrete using the SBFEM-FVM model

  • Zhang, Peng;Du, Chengbin;Zhao, Wenhu;Zhang, Deheng
    • Structural Engineering and Mechanics
    • /
    • 제80권5호
    • /
    • pp.553-562
    • /
    • 2021
  • In this paper, a hybrid scaled boundary finite element and finite volume method (SBFEM-FVM) is proposed for simulating hydraulic-fracture propagation in brittle concrete materials. As a semi-analytical method, the scaled boundary finite element method is introduced for modelling concrete crack propagation under both an external force and water pressure. The finite volume method is employed to model the water within the crack and consider the relationship between the water pressure and the crack opening distance. The cohesive crack model is used to analyse the non-linear fracture process zone. The numerical results are compared with experimental data, indicating that the F-CMOD curves and water pressure changes under different loading conditions are approximately the same. Different types of water pressure distributions are also studied with the proposed coupled model, and the results show that the internal water pressure distribution has an important influence on crack propagation.

Numerical simulation of columns with un-bonded reinforcing bars for crack control

  • Chen, G.;Fukuyama, H.;Teshigawara, M.;Etoh, H.;Kusunoki, K.;Suwada, H.
    • Structural Engineering and Mechanics
    • /
    • 제26권4호
    • /
    • pp.409-426
    • /
    • 2007
  • Following previous work carried out in Building Research Institute in Japan, finite element analyses of conceptual column designs are performed in this paper. The effectiveness of the numerical model is evaluated by experimental tests and parametric studies are conducted to determine influential factors in conceptual column designs. First, three different column designs are analysed: bonded, un-bonded, and un-bonded with additional reinforcing bars. The load-displacement curves and cracking patterns in concrete are obtained and compared with experimental ones. The comparisons indicate that the finite element model is able to reflect the experimental results closely. Both numerical and experimental results show that, the introduction of un-bonded zones in a column end can reduce cracking strains, accordingly reduce the stiffness and strength as well; the addition of extra reinforcement in the un-bonded zones can offset the losses of the stiffness and strength. To decide the proper length of the un-bonded zones and the sufficient amount of the additional reinforcing bars, parametric studies are carried out on their influences. It has been found that the stiffness of un-bonded designs slightly decreases with increasing the length of the un-bonded zones and increases with the size of the additional reinforcing bars.

비선형 탄성파 파동장 역산 방법에서 탄성파 변수 세트에 관한 정보의 수치적 연구 (Numerical studies of information about elastic parameter sets in non-linear elastic wavefield inversion schemes)

  • 주정 명남
    • 지구물리와물리탐사
    • /
    • 제10권1호
    • /
    • pp.1-18
    • /
    • 2007
  • 비선형 파동장 역산은 지하의 암석과 물성을 결정하는 물리적인 제약을 위한 탄성파 변수들을 평가하는데 강력한 방법이다. 이 논문에서는 현장자료와 2 차원 탄성파 속도 모델로부터 탄성파 속도 변화를 재구성하여 만들어낸 6 가지 탄성파 속도 모드를 제시하였다. 탄성파 반사파 자료의 정보는 종종 단파장과 장파장 성분으로 나뉘어진다. 지역검색 방법은 만약 초기모델이 실제 모델로부터 동떨어지면 장파장의 속도 변화를 측정하는데 어렵다. 그러면 송신주파수들은 낮은 대역에서 더 높은 대역들로 모델의 탄성파 변수들을 측정하기 위해 변환된다 (frequency-cascade scheme) 탄성파 변수들은 P 파와 S 파 속도가 섬도에 따라 선형으로 변화는 초기 모델 가정하에 각 역산단계에서 (simultaneous mode) 계산된다. P 파와 S 파 속도 $('V_P\;V_S\;mode')$, P 파 임피던스와 포와송 비 $('I_P\;Poisson\;mode')$, P 파와 S 파 임피던스 $('I_P\;I_S\;mode')$와 같은 세가지 모드들이 탄성파 변수들의 역산을 위해 얻어진다. 각 탄성파 역산 단계에서 밀도값들은 세가지 가정하에 개선(update)된다. 탄성파 모델을 위한 각 변수 세트들에서 역산의 정확도를 평가한 결과 $V_P\;V_S$ 모드와 $I_P$ Poisson 모드 사이에 별다른 역산 차이는 없었다. $I_P\;I_S$ 모드들에 대해서도 같은 결론이 예상된다. 이러한 결과들은 전 파장에 걸친 탄성파 파동장 역산의 견고한 기초를 제공한다.

Base isolated RC building - performance evaluation and numerical model updating using recorded earthquake response

  • Nath, Rupam Jyoti;Deb, Sajal Kanti;Dutta, Anjan
    • Earthquakes and Structures
    • /
    • 제4권5호
    • /
    • pp.471-487
    • /
    • 2013
  • Performance of a prototype base isolated building located at Indian Institute of Technology, Guwahati (IITG) has been studied here. Two numbers of three storeyed single bay RCC framed prototype buildings were constructed for experimental purpose at IITG, one supported on conventional isolated footings and the other on a seismic isolation system, consisting of lead plug bearings. Force balance accelerometers and a 12 channel strong motion recorder have been used for recording building response during seismic events. Floor responses from these buildings show amplification for the conventional building while 60 to 70% reduction has been observed for the isolated building. Numerical models of both the buildings have been created in SAP2000 Nonlinear. Infill walls have been modeled as compression struts and have been incorporated into the 3D models using Gap elements. System identification of the recorded data has been carried out using Parametric State Space Modeling (N4SID) and the numerical models have been updated accordingly. The study demonstrates the effectiveness of base isolation systems in controlling seismic response of isolated buildings thereby leading to increased levels of seismic protection. The numerical models calibrated by relatively low level of earthquake shaking provides the starting point for modeling the non-linear response of the building when subjected to strong shaking.

유전 알고리즘을 이용한 다항식 반응면 모델의 최적 기저함수 선정 (Optimal Basis Function Selection for Polynomial Response Surface Model Using Genetic Algorithm)

  • 김상진;유흥철;배승호
    • 한국항공우주학회지
    • /
    • 제41권1호
    • /
    • pp.48-53
    • /
    • 2013
  • 다항식 반응면 모델은 실제의 물리적, 수치적 실험을 대체하는 근사모델로 여러 공학분야에서 사용되고 있다. 일반적으로 반응면 구성에 필요한 실험점 수를 줄이기 위하여 낮은 차수의 다항식을 사용하므로, 심한 비선형성이 동반되는 현상에 대한 모델링에는 한계가 있다. 본 연구에서는 다항식의 차수를 증가시키는 방법 및 다항식을 구성하는 최적의 기저함수를 선정하는 방법을 통해 다항식 반응면의 모델링 능력을 확장할 수 있는 방법을 개발하였다. 최적 기저함수의 선정에는 유전 알고리즘을 적용하였으며, 1 변수 및 2변수 함수와 풍동시험 데이터에 대한 모델링 사례를 통해 개발된 방법이 비선형성이 심한 현상을 모델링하는데 적용될 수 있음을 확인하였다.

SIP말뚝의 주면마찰특성 및 주면 경계요소의 수치모델에 관한 연구 (A Study on the Skin Friction Characteristics of SIP and Numerical Model of the Interface Between SIP and Soils)

  • 천병식;임해식
    • 한국지반공학회논문집
    • /
    • 제19권2호
    • /
    • pp.247-254
    • /
    • 2003
  • 최근에 건설공사에서 발생하는 환경문제에 대한 관심이 고조되는 가운데 저소음, 저진동 공법인 매입말뚝공법이 건설현장에 많이 적용되고 있다. 이러한 건설여건의 변화에 부흥하여 국내에서는 지반을 굴착하고 시멘트 페이스트를 주입한 후 기성말뚝을 삽입하는 SIP공법(Soil-Cement Injected Precast Pile)의 적용이 늘고 있으나, 현재 국내 지반조건에 맞는 고유의 관계식이 없는 실정이다. 이와 같은 문제해결에 기여하기 위해, 본 연구에서는 SIP말뚝 주면과 지반사이의 저항력을 직접전단시험으로 측정하여 그 경향을 분석하였다. 직접전단시험 결과 SIP말뚝의 주면 저항력 성분이 수직하중에 가장 크게 영향을 받는다는 것을 밝혀내고 국내 주요 토질인 SM, SC 토질에서 이를 인자로 한 최대주면저항력 산정식을 제안하였다. 또한 말뚝 표면과 주면 지반과의 전단저항 거동 특성을 수치적으로 정확히 묘사하기 위해 Duncan(1971)의 쌍곡선 모델식과 새로운 비선형 수치모델식에 따른 계수산정식을 제안하였다.

직접전단시험모델에 의한 뿌리말뚝의 탄소성조인트 유한요소해석 (Elasto-plastic Joint Finite Element Analysis of Root-pile Using the Direct Shear Test Model)

  • 한중근
    • 한국환경복원기술학회지
    • /
    • 제5권4호
    • /
    • pp.19-30
    • /
    • 2002
  • The stability of slope using root-pile like to the reinforcements is affected by the interaction behavior mechanism of soil-reinforcements. Through the studying on the interaction in joint of its, therefore, the control roles can be find out in installed slope. In study, the stress level ratio based on the insert angle of installed reinforcements in soil used to numerical analysis, which was results from the duty direct shear test in Lab. The maximum shear strain variation on the reinforcements was observed at insert angle, which was approximately similar to the calculated angle based on the equation proposed by the Jewell. The elasto-plastic joint model on the contact area of soil-reinforcements was presumed, the reinforced soil assumed non-linear elastic model and the reinforcements supposed elastic model, respectively. The finite element analysis of assumed models was performed. The shear strain variation of non-reinforced state obtained by the FEM analysis including elasto-plastic joint elements were shown the rationality of general limit equilibrium analysis for the slope failure mode on driving zone and resistance zone, which based on the stress level step according to failure ratio. Through the variation of shear strain for the variation of inserting angle of reinforcements, the different mechanism on the bending and the shear resistance of reinforcements was shown fair possibility.

강우 데이터를 쓰지 않는 홍수예측법에 관한 연구 (A Study on Flood Prediction without Rainfall Data)

  • 김치홍
    • 기술사
    • /
    • 제18권2호
    • /
    • pp.1-5
    • /
    • 1985
  • In the flood prediction research, it is pointed out that the difficulty of flood prediction is the frequently experienced overestimation of flood peak. That is caused by the rainfall prediction difficulty and the nonlinearity of hydrological phenomena. Even though the former reason will remain still unsolved, but the latter one can be possibly resolved the method of the AMRA (Auto Regressive Moving Average) model for each runoff component as developed by Dr. Hino and Dr. Hasebe. The principle of the method consists of separating though the numerical filters the total runoff time series into long-term, intermediate and short-term components, or ground water flow, interflow, and surface flow components. As a total system, a hydrological system is a non-linear one. However, once it is separated into two or three subsystems, each subsystem may be treated as a linear system. Also the rainfall components into each subsystem a estimated inversely from the runoff component which is separated from the observed flood. That is why flood prediction can be done without rainfall data. In the prediction of surface flow, the Kalman filter will be applicable but this paper shows only impulse function method.

  • PDF

Stochastic response spectra for an actively-controlled structure

  • Mochio, Takashi
    • Structural Engineering and Mechanics
    • /
    • 제32권1호
    • /
    • pp.179-191
    • /
    • 2009
  • A stochastic response spectrum method is proposed for simple evaluation of the structural response of an actively controlled aseismic structure. The response spectrum is constructed assuming a linear structure with an active mass damper (AMD) system, and an earthquake wave model given by the product of a non-stationary envelope function and a stationary Gaussian random process with Kanai-Tajimi power spectral density. The control design is executed using a linear quadratic Gaussian control strategy for an enlarged state space system, and the response amplification factor is given by the combination of the obtained statistical response values and extreme value theory. The response spectrum thus produced can be used for simple dynamical analyses. The response factors obtained by this method for a multi-degree-of-freedom structure are shown to be comparable with those determined by numerical simulations, demonstrating the validity and utility of the proposed technique as a simple design tool. This method is expected to be useful for engineers in the initial design stage for structures with active aseismic control.