• Title/Summary/Keyword: Non-combustibility

Search Result 21, Processing Time 0.023 seconds

Paper Combustibility : Cigarette Combustibility? (귈련지 연소성과 담배 연소성과의 관계는?)

  • Baskevitch Nicolas;Loureau Jean-Marie;Moigne Christophe le
    • Proceedings of the Korean Society of Tobacco Science Conference
    • /
    • 1999.10a
    • /
    • pp.9-12
    • /
    • 1999
  • Up to the 60's cigarette paper commercial grades were simply described as ' non combustible ', ' combustible ' or ' extra-combustible '. It was assumed that combustibility of the paper itself was correlated with cigarette combustibility. Since then, the characteristics of cigarette paper, like natural porosity and burning additives, which influence truly cigarette combustibility, have been described by various authors and it became clear to cigarette designers that paper combustibility was not generally a significant factor governing cigarette combustibility. On the other hand, for Roll Your Own(RYO)wrapping papers, the ECPCI has proposed to the CORESTA RYO Task Force to use paper combustibility, and specially the LCT test, to classify papers between low and high smoke delivery, and a new Task Force on PAPER COMBUSTIBILITY was recently set up to develop a recommended method. The objective of this presentation Is to show results demonstrating that for paper used on cigarettes, there is NO GENERAL CORTRELATION between PAPER and CIGARETTE combustibility. We will also show results confirming that, for the specific group of RYO booklet papers containing no burning additives, there is a correlation between paper combustibility and FCSA's Combustibility/smoke delivery. This apparent discrepancy will be explained by reviewing the role played by the various characteristics of cigarette paper in governing cigarette combustibility.

  • PDF

The Combustion Character of Polymer Modified Cement Mortar (폴리머 시멘트 모르타르의 연소특성 평가)

  • Park, Dong-Cheon;Oh, Kwang-Suek;Kim, Hyo-Youl;Oh, Sang-Gyun;Kang, Byeung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.63-66
    • /
    • 2008
  • Not only mechanical properties, bonding properties, electro chemical properties, etc. but also fire safety is required in patch repair materials such as polymer modified cement mortar (PCM) which are used to deteriorated reinforced concrete structure. Unfortunately, it is very difficult to choice the appropriate repair materials because there are not enough information about fire safety properties of PCM. In this study, The combustion characters of PCM were evaluated through the heat release rate test and non-combustibility test. The pyrogenicity test uses the cone calorimeter based on the oxygen consumption method. The non-combustibility test is from the temperature change inside the furnace during the test. The effect of the types of polymer and polymer content were evaluated from the series of test. The results are like followings. 1) The higher the W/C of PCM, the lower the gross calorific value and heat generation rate in the heat release rate test. The amount of heat generation of PCM is like the order of VVA, EVA, and SBR in this study. 2) Some materials such as E45-100, E50-100, E60-100, S50-50, and S50-100 were estimated as not appropriate building materials in the non combustibility test.

  • PDF

A Study on the Refractory Performance Verification of the Thermal Insulators for AES Ducts and Piping (AES 계열 덕트·배관 단열재의 내화성능 검증에 관한 연구)

  • Kwang-Ho Ham;Jea-Chun Sa;Joo-Hwan Lee;Se-Hong Min
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.419-429
    • /
    • 2024
  • Purpose: To enhance the non-combustibility of fire protection piping insulation and improve the heat resistance of smoke extraction duct insulation, I plan to verify the suitability of AES insulation materials for these applications through performance testing. Method: The non-combustibility, heat resistance, and thermal insulation performance of AES insulation materials will be verified through various tests. Result: According to the 'Standards for Flame Retardancy and Fire Spread Prevention of Building Finishing Materials,' the results of non-combustibility and gas toxicity tests confirmed the non-combustible properties. The standard fire resistance tests verified the fire resistance performance. Additionally, the thermal insulation performance was confirmed through building insulation tests. Conclusion: As the performance tests on AES inorganic insulation materials have proven their noncombustibility, fire resistance, and thermal insulation performance, these materials are considered a viable alternative for improving fire spread prevention in buildings.

Burn-up Characteristics of Polymer-Modified Cement Mortar Used for Building Repair (고온시에서의 폴리머 시멘트 모르타르의 연소특성에 관한 연구)

  • Kim, Hyung-Jun;Noguchi, Takahumi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.295-298
    • /
    • 2012
  • Repair and strengthening is necessary to extend the service life of existing buildings. Polymer-modified cement mortar (PCM) has been extensively used as a high performance material particularly for finishing and repairing works in concrete building because of itsexcellent adhesion, waterproofing, resistance to chemical attack, and workability. As PCM contains organic polymer, it is necessary to clarify its properties at high temperature under fire, on which sufficient data are not available. This paper evaluated the burn-up characteristics of polymer-modified cement mortar with cone calorimeter test, non-combustibility test and flammability test with experimental parameters such as the types of polymer, unit-polymer content, polymer-cement ratio and thickness of the specimen.

  • PDF

A Study on the Non-combustible Properties of High-density Fiber Cement Composites Mixed with Hemp Fibers (마 섬유 혼입에 따른 고밀도 섬유 시멘트 복합체의 불연 특성 연구)

  • Jang, Kyong-Pil;Song, Tae-Hyeob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.314-320
    • /
    • 2022
  • The function of reinforcing fibers used in building materials is to maintain resistance to bending loads and to function for cracking caused by drying shrinkage. High-density fiber-cement composites are mainly used for linear plates and are used to increase bending resistance. Therefore, tensile properties, bonding strength with cement hydrate, alkali resistance, and the like are required. Recently, as the non-combustible performance has been strengthened, a function to minimize the occurrence of sparks during high-temperature heating has been added. Therefore, the use of organic fibers is limited. In this study, a study was conducted to replace polypropylene used as reinforcing fiber with hemp fiber with excellent heat resistance. Hemp fibers have excellent heat resistance, good affinity with cement, and excellent alkali resistance. Based on the total volume of polypropylene fibers used in the existing formulation, the non-combustible performance was compared and evaluated by using hemp fibers instead of the polypropylene fibers, and basic physical properties such as flexural strength were tested. As a result of conducting a non-combustibility and physical property test using hemp fibers with a fiber length of 7 mm using 2 % and 3 % by weight, it was found that there is no remaining time of the flame, and the flexural strength can be secured at 95 % level of the existing polypropylene fiber.

Development and Performance Evaluation of Non-flammable Mineral Foam Board Using Waste Glass (폐유리를 활용한 불연 무기물 발포 보드 개발 및 성능평가)

  • Kim, Hyen-Soo;Choi, Won-Young;Kim, Sang-Heon;Choi, Seung-Hwan;Park, Soon-Don
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.17-25
    • /
    • 2020
  • In this study, non-flammable mineral foam board using waste glass that can be produced to standardized specifications were developed and evaluated for the performance. In addition to the physical and mechanical performance, the environmental properties such as insulation, non-combustibility, gas hazard, sound absorption, etc. were tested to verify the use as interior and exterior building materials. Through the structural review, the validity was verified for the application of the office and restaurant building.

Evaluation of the Performance of the PVA Fiber Reinforced Inorganic Binder and Industrial By-products Building Board

  • Park, Jong-Pil;Lee, Sang-Soo;Song, Ha-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.3
    • /
    • pp.253-262
    • /
    • 2013
  • The test on the mix of PVA fiber of low carbon inorganic composite as a cement substitute found it to be satisfactory in terms of flexibility and stiffness. The result of the evaluation of the properties of low carbon inorganic panel revealed that the absorptivity was low at 8 to 9%, which is lower than the KS value of 25%. Also, the test on non-combustibility and gas toxicity found that these factors satisfied the decision criteria. In the test on heavy metals discharges, Pb, Cd, Cr6+, Hg, and As were not detected. Regarding far-Infrared emissivity and formaldehyde emission, the substitute was found to be harmless to the human body. Therefore, if the issue of shrinkage, which is a disadvantage of inorganic composites, is addressed, it is judged that it is possible to develop a low carbon inorganic composite panel with better performance.

Mechanical Properties of External Thermal Insulation Composite System with Quasi-Non-Combustible Performance (준불연 외단열시스템의 역학적 특성에 관한 연구)

  • Choi, Ki-Sun;Ha, Soo-Kyung;Oh, Keun-Yeong;Park, Keum-Sung;Ryu, Hwa-Sung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.5
    • /
    • pp.507-518
    • /
    • 2021
  • The application of an adhesive calcium carbonate-based hybrid insulation board with quasi-combustibility in the external thermal insulation composite system(ETICS) ensures effective thermal performance and fire safety. This study aimed to conduct a mechanical test of the quasi-non-combustible hybrid insulation board as well as its constituent materials to obtain the basic data for the structural design of the adhesive ETICS. Test specimens were fabricated based on domestic and foreign test standards to examine and evaluate their tensile, compressive, flexural, and shear strengths. The strength characteristics of the quasi-non-combustible hybrid insulation board were identified from the test results, which verified that the minimum required physical properties suggested by the current KS M ISO 4898 were met. Furthermore, the quasi-non-combustible ETICS used in this study was found to be suitable for use as an external insulation system for walls unless subjected to continuous gravity load, such as a heavy exterior finish.