• Title/Summary/Keyword: Non-catalyst

Search Result 256, Processing Time 0.021 seconds

Properties and Glue Shear Strength of the Water Soluble Urea-Phenol Copolymer Adhesive as a High Temperature Curing Binder for Plywood (합판용(合板用) 고온경화형(高温硬化型) 수용성(水溶性) 요소(尿素)·페놀공축합수지(共縮合樹脂)의 성질(性質)과 그 접착강도(接着強度))

  • Lee, Hwa Hyoung
    • Journal of Korean Society of Forest Science
    • /
    • v.60 no.1
    • /
    • pp.51-57
    • /
    • 1983
  • Properties and glue shear strength of each water soluble rues-phenol copolymer adhesive and phenolic resin adhesive were examined as a high temperature curing binder through the manufacture of plywood made of Kapur veneer. The former has different molar ratio and the latter was made from different catalyst method. The results are summarized as follows: 1) Specific gravities of air dried plywood manufactured from each adhesive ranged from 0.67 to 0.82 and their moisture contents met the K.S. standard 2) In dry and wet shear strength, adhesives with 60 percent of non volatile content showed higher values than those with 50 percent except phenolic resin. Urea-phenol copolymer resin with 20 percent of phenol content exhibited the highest, and that with 70 percent the lowest. Filling effect of wood flour on the bonding strength is great in urea-phenol copolymer resin with more than 50 percent of phenol content, especially significant in 50 percent of non volatile content including alkali catalyst phenolic resin. Alkali and acid catalyst methods were the highest among the adhesive manufacture methods. In wet strength, urea resin belongs to the lowest group. 3) In glue shear strength after boiling and drying test, no method for manufacturing phenolic formaldehyde resin adhesive was stronger than alkali and acid catalyst methods. Phenolic resin made from alkali catalyst method needs a wood flour filler to improve the bonding quality. Urea-phenol copolymer resin with 10 percent of phenol content showed the reasonable water resistance.

  • PDF

The beating effect of high crystalized nonwood fibers treated with low-molecular weighted waste celulase in the papermaking processes (Cellulase생산공정중 발생되는 저분자량 분포도의 폐효소류 처리가 고결정화된 배목재 섬유소의 고해에 미치는 영향)

  • 김병현;신종순;강영립;박병권;이성구
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.18 no.1
    • /
    • pp.121-139
    • /
    • 2000
  • This study is to test the possibility of applying the low-molecular weighted waste cellulase, which is produced in the process of cellulase production, to paper making. After experimenting on high-crystallized non-wood fibers with beating catalyst. I got the result that the condition for the optimal effect is temperature 40~6$0^{\circ}C$, the time 90min to 120min, pH 5.0 to 6.0, the enzyme contents 0.3% and that the effect of beating such as slight reduction of fiver viscosity, increase of water retention value(WRV) and shortening of fiber length was increased with waste cellulase. Through this process, the density, folding endurance, tensile strength and burst strength of paper was remarkably increased, which is inferred to result from the increased flexibility of fiber by individual characteristics of non-wood fiber, which was high-crystallized by penetrated low-molecular weight cellulases in the fiber.

  • PDF

A Non-Pt Catalyst for Improved Oxygen Reduction Reaction in Microbial Fuel Cells

  • Kim, Jy-Yeon;Han, Sang-Beom;Oh, Sang-Eun;Park, Kyung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.2
    • /
    • pp.71-76
    • /
    • 2011
  • Fe-tetramethoxyphenylporphyrin on carbon black (Fe-TMPP/C) is examined and compared with carbon (C) and Pt-coated carbon (Pt/C) for oxygen reduction reaction in a two chambered microbial fuel cell (MFC). The Fe-TMPP/C is prepared by heat treatment and characterized using SEM, TEM, and XPS. The electrochemical properties of catalysts are characterized by voltammerty and single cell measurements. It is found that the power generation in the MFC with Fe-TMPP/C as the cathode is higher than that with Pt/C. The maximum power of the Fe-TMPP/C is 0.12 mW compared with 0.10 mW (Pt/C) and 0.02 mW (C). This high output with the Fe-TMPP/C indicates that MFCs are promising in further practical applications with low cost macrocycles catalysts.

Combustion Characterisitics of a Catalytic Combustorfor an Automotive Ceramic Gas Turbine (세라믹 가스 터빈용 촉매연소기의 연소특성)

  • Kim, Young-Il
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.1 no.2
    • /
    • pp.49-54
    • /
    • 1998
  • In the catalytic combustor, combustion characteristic and deterioration of catalysts were affected by non-uniformity of pre-mixed gas, Therefore, formation of uniform pre-mixed gas is one of important subjects. In this study, the effect of uniformity and non-uniformity of pre-mixed gas supplied to the catalyst was examined to clarify reaction acceleration and combustion characteristic of the catalytic combustion. It was clarified that static mixer or vaporizer tube length of about 150mm and weak swirl to a combustion air were effictive expedient to make uniform pre-mixed gas. And catalystic inlet temperature needs more than $600^{\circ}C$ with rich pre-mixed gas to active reaction.

  • PDF

Decomposition of Acetonitrile by Planar Type Dielectric Barrier Discharge Reactor (평판형 유전체 장벽 방전 반응기에서 Acetonitrile의 분해 특성)

  • 송영훈;김관태;류삼곤;이해완
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.105-112
    • /
    • 2002
  • A combined process of non-thermal plasma and catalytic techniques has been investigated to treat toxic gas compounds in air. The treated gas in the present study is $CH_3$CN that has been known to be a simulant of toxic chemical agent. A planar type dielectric barrier discharge(DBD) reactor has been used to generate non-thermal plasma that produces various chemically active species, O, N, OH, $O_3$, ion, electrons, etc. Several different types of adsorbents and catalysts, which are MS 5A, MS 13X, Pt/alumina, are packed into the plasma reactor, and have been tested to save power consumption and to treat by-products. Various aspects of the present techniques, which are decomposition efficiencies along with the power consumption, by-product analysis, reaction pathways modified by the adsorbents and catalysts, have been discussed in the present study.

Cycloolefins Oxidation Reaction Catalyzed by Ga(III)-, In(III)- and TI(III)-Porphyrin Derivatives (Ga(III)-, In(III)-, TI(III)-porphyrin 유도체를 촉매제로 한 고리성 올레핀의 산화반응)

  • Na, Hun-Gil
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.76-88
    • /
    • 2004
  • The catalytic oxidation reaction of several cycloolefins in $CH_2Cl_2$ have been investigated using non-redox metalloporphyrin(M = Ga(III), In(III) and TI(III) complexes as a catalyst and sodium hypochlorite as a terminal oxidant. Porphyrins were $(p-CH_3O)$TPP, $(p-CH_3)$TPP, TPP, (p-F)TPP, (p-Cl)TPP and $(F_{20})$TPP (TPP=5,10,15,20-tetraphenyl-21H,23H-porphyrin) and olefins were cyclopentene, cyclohexene, cycloheptene and cyclooctene, The substrate conversion yield(%) was investigated according to the radius effect of non-redox metal ion, substituent effect and hindrance effect of metalloporphyrin. The conversion yield of cycloolefin was in the following order : $C_5$ < $C_6$ < $C_7$ = $C_8$.

A Study on Genernation and Decreasement of Formaldehyde (Formaldehyde의 발생과 그 감소방안)

  • 남상우
    • Journal of the Korean Home Economics Association
    • /
    • v.25 no.1
    • /
    • pp.35-42
    • /
    • 1987
  • Since the 1930's, a rapid development of resin processing has contributed to making our clothing life convenient and rich. Wrinkle considered as the largest defect of cellulose fiber is generated from fixation of molecules which are divided by compression or crookedness. It can be protected by building a bridge between the molecules the joint combination of the inside of the fiber. The formaldehyde reactive resin which is used in processing resin is a chemical compound with more than 2 N-methylol or N-alkoxymethylol group and a chemical compound with N-methylol shows the property of W.W and D.P through the very complex bridge-bonding reaction under the OH group of cellulose and acid catalyst. However, if the processing is excessively carried out, resin-processed textile emits the formaldehyde when the bridge bonding agent reacts to amine type under the acid condition or the formaldehyde remains in the condition of non-reaction or the resin combinates by itself, or the methylol group of non-reactive resin is hydrolyzed due to the insufficient themomagnetic treatment.

  • PDF

Synthesis of Alternating Head-to-Head Copolymer of Methyl $\alpha$-cyanoacrylate and 2,3-Dihydrofuran. Ring-Opening Polymerization of 3-Methoxy-4-cyano-2,9-dioxabicyclo[4.3.0]non-3-ene

  • Lee, Ju-Yeon;Cho, I-Whan
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.3
    • /
    • pp.176-179
    • /
    • 1988
  • 3-Methoxy-4-cyano-2,9-dioxabicyclo[4.3.0]non-3-e ne (1) was prepared by (4 + 2) cycloaddition reaction of methyl ${\alpha}$-cyanoacrylate with 2,3-dihydrofuran. Compound 1 was ring-open polymerized by cationic catalyst such as boron trifluoride etherate to obtain alternating head-to-head (H-H) copolymer (2) of methyl $\alpha$ -cyanoacrylate and 2,3-dihydrofuran. For comparison, head-to-tail (H-T) copolymer (3) was also prepared by free radical copolymerization of the corresponding monomers. The H-H copolymer exhibited minor differences in its $^1H$-NMR and IR spectra, but in the $^{13}C$-NMR spectra significant differences were observed between the H-H and H-T copolymers. All of the H-H and H-T copolymers were soluble in common solvents and the inherent viscosities were in the range 0.2-0.3 dl/g.

Removal of Styrene Using Different Types of Non-Thermal Plasma Reactors (저온플라즈마 반응기의 형태에 따른 스타이렌 분해 특성에 관한 연구)

  • Park, Jeong-Uk;Choi, Kum-Chan;Kim, Hyun-Ha;Ogata, Atsushi;Futamura, Shigeru
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.215-223
    • /
    • 2005
  • Non-thermal plasma decomposition of gas-phase styrene was investigated in this study using three different types of plasma reactors; dielectric-barrier discharge (DBD) reactor, surface discharge (SD) reactor and plasma-driven catalyst (PDC) reactor packed with 2.0 wt% $Ag/TiO_2$ catalysts. The main parameters used for the comparative assessment of the plasma reactors include the decomposition efficiency, carbon balance, byproduct distribution, COx ($CO+CO_2$) selectivity and COx yield. The SD and the DBD reactors showed better conversion efficiency of styrene than that of the PDC reactor due to their larger capability in ozone formation. On the other hand, the PDC reactor showed better carbon balance, the yield and the selectivity of COx. The required specific input energies to achieve 100% carbon balance from the decomposition of 100 ppmv styrene using the plasma alone reactors and the PDC reactor were 420 J/L and 110 J/L, respectively. The major decomposition products in gas-phase were CO, $CO_2$ and HCOOH regardless of the types of plasma reactors. In the case of SD and DBD reactors, the $CO_2$ selectivity ranged in $39.5{\sim}60%$. The $CO_2$ selectivity in the PDC reactor was in range of $68.5{\sim}75.5%$.

Methodology Development for the Reuse of Sludge Generated from Fenton's Oxidation Process (펜톤산화 공정에서 발생하는 슬러지의 재활용 방안)

  • Koo, Tai-Wan;Cho, Soon-Haing;Choi, Young-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.1083-1091
    • /
    • 2000
  • The objective of this study is to develop effective and economical treatment processes for the removal of non-biodegradable organics by reusing the sludge generated from Fenton's Oxidation Process. It was found that about 50% of coagulants and 50% of catalyst can be reduced by reusing the sludge generated from Fenton's Oxidation Process. It was also found that the amount of sludge generation can be reduced in coagulation process and Fenton's Oxidation Process. From the results of bench-scale test, it was found that the average removal efficiency increased to 8.5% and the amount of sludge generation was reduced up to 35% by reusing the sludge as coagulant. The average organic removal efficiency increased to 5.3% and the amount of sludge generation was reduced up to 14% by reusing the sludge as catalyst in Fenton's Oxidation. It can be concluded that the reuse of sludge generated from Fenton's Oxidation Process would be reduced cost of chemical consumption and Fenton's sludge treatment.

  • PDF