DOI QR코드

DOI QR Code

A Non-Pt Catalyst for Improved Oxygen Reduction Reaction in Microbial Fuel Cells

  • Kim, Jy-Yeon (Department of Chemical and Environmental Engineering, Soongsil University) ;
  • Han, Sang-Beom (Department of Chemical and Environmental Engineering, Soongsil University) ;
  • Oh, Sang-Eun (Department of Biological Environment, Kangwon National University) ;
  • Park, Kyung-Won (Department of Chemical and Environmental Engineering, Soongsil University)
  • Received : 2010.11.26
  • Accepted : 2011.01.26
  • Published : 2011.05.31

Abstract

Fe-tetramethoxyphenylporphyrin on carbon black (Fe-TMPP/C) is examined and compared with carbon (C) and Pt-coated carbon (Pt/C) for oxygen reduction reaction in a two chambered microbial fuel cell (MFC). The Fe-TMPP/C is prepared by heat treatment and characterized using SEM, TEM, and XPS. The electrochemical properties of catalysts are characterized by voltammerty and single cell measurements. It is found that the power generation in the MFC with Fe-TMPP/C as the cathode is higher than that with Pt/C. The maximum power of the Fe-TMPP/C is 0.12 mW compared with 0.10 mW (Pt/C) and 0.02 mW (C). This high output with the Fe-TMPP/C indicates that MFCs are promising in further practical applications with low cost macrocycles catalysts.

Keywords

References

  1. B. E. Logan and N.J. Hoboken, "Microbial fuel cells", Wiley-Interscience. xii, New York (2008).
  2. B. E. Logan, 'Exoelectrogenic bacteria that power microbial fuel cells' Nat. Rev. Micro., 7, 375 (2009). https://doi.org/10.1038/nrmicro2113
  3. D. R. Lovely, J. D. Wall, C. S. Harwood, and A. L. Demain, "Electricity production with electricigens", ASM Press. Washington D.C. (2008).
  4. K. Rabaey, S. T. Read, P. Clauwaert, S. Freguia, P. L. Bond, L. L. Blackall, and J. Keller, 'Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells' ISME J., 2, 519 (2008). https://doi.org/10.1038/ismej.2008.1
  5. K. Rabaey and W. Verstraete, 'Microbial fuel cells: novel biotechnology for energy generation' Trends Biotechnol., 23, 291(2005). https://doi.org/10.1016/j.tibtech.2005.04.008
  6. J. R. Kim, S. Cheng, S. E. Oh, and B. E. Logan, 'Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells' Environ. Sci. Technol., 41, 1004 (2007). https://doi.org/10.1021/es062202m
  7. S. E. Oh, J. R. Kim, J. H. Joo, and B. E. Logan, 'Effects of applied voltages and dissolved oxygen on sustained power generation by microbial fuel cells' Water Sci. Technol., 60, 1311 (2009). https://doi.org/10.2166/wst.2009.444
  8. S. E. Oh, B. Min, and B. E. Logan, Environ. 'Cathode performance as a factor in electricity generation in microbial fuel cells' Sci. Technol., 38, 4900 (2004). https://doi.org/10.1021/es049422p
  9. S. Cheng, H. Liu, and B. E. Logan, Environ. 'Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single microbial fuel cells' Sci. Technol., 40, 364 (2006). https://doi.org/10.1021/es0512071
  10. S. You, Q. Zhao, J. Zhang, J. Jiang, and S. Zhao, 'A microbial fuel cell using permanganate as the cathodic electron acceptor' J. Power Sources, 162, 1409 (2006). https://doi.org/10.1016/j.jpowsour.2006.07.063
  11. F. Zhao, F. Harnisch, U. Schroder, F. Scholz, P. Bogdanoff, and I. Herrmann, 'Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells' Electrochem. Comm., 7, 1405 (2005). https://doi.org/10.1016/j.elecom.2005.09.032
  12. L. Zhang, J. J. Zhang, D. P. Wilkinson, and H. J. Wang, 'Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions' J. Power Sources, 156, 171 (2006). https://doi.org/10.1016/j.jpowsour.2005.05.069
  13. E. H.Yu, S. Cheng, K. Scott, and B. Logan 'Microbial fuel cell performance with non-Pt cathode catalysts' J. Power Sources, 171, 275 (2007). https://doi.org/10.1016/j.jpowsour.2007.07.010
  14. R. Jasinski, 'A New Fuel Cell Cathode Catalyst' Nature, 201, 1212 (1964). https://doi.org/10.1038/2011212a0
  15. T. Schilling and M. Bron, 'Oxygen reduction at Fe-N-modified carbon nanotubes in acidic electrolyte' Electrochim. Acta, 53, 5379 (2008). https://doi.org/10.1016/j.electacta.2008.02.062
  16. R. Bashyam and P. Zelenay, 'A class of non-precious metal composite catalysts for fuel cells' Nature, 443, 63 (2006). https://doi.org/10.1038/nature05118
  17. B. Wang, 'Recent development of non-platinum catalysts for oxygen reduction reaction' J. Power Sources, 152, 1 (2005). https://doi.org/10.1016/j.jpowsour.2005.05.098
  18. C. W. B. Bezerra, L. Zhang, K. Lee, H. Liu, A. L. B. Marques, E. P. Marques, H. Wang, and J. Zhang, 'A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction' Electrochim. Acta, 53, 4937 (2008). https://doi.org/10.1016/j.electacta.2008.02.012
  19. K. Lee, L. Zhang, H. Lui, R. Hui, Z. Shi, and J. J. Zhang, 'Oxygen reduction reaction (ORR) catalyzed by carbon-supported cobalt polypyrrole (Co-PPy/C) electrocatalysts' Electrochim. Acta, 54, 4704 (2009). https://doi.org/10.1016/j.electacta.2009.03.081
  20. S.-E. Oh and B.E. Logan, 'Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells' Appl Microbiol. Biotechnol., 70, 162 (2006). https://doi.org/10.1007/s00253-005-0066-y
  21. F. Harnisch, S. Wirth and U. Schroder, 'Effects of substrate and metabolite crossover on the cathodic oxygen reduction reaction in microbial fuel cells: Platinum vs. iron(II) phthalocyanine based electrodes' Electrochem. Comm., 11, 2253 (2009). https://doi.org/10.1016/j.elecom.2009.10.002

Cited by

  1. A novel stainless steel mesh/cobalt oxide hybrid electrode for efficient catalysis of oxygen reduction in a microbial fuel cell vol.55, 2014, https://doi.org/10.1016/j.bios.2013.12.015
  2. Abiotic Oxygen Reduction Reaction Catalysts Used in Microbial Fuel Cells vol.1, pp.11, 2014, https://doi.org/10.1002/celc.201402093