• 제목/요약/키워드: Non-Prediction Algorithm

검색결과 223건 처리시간 0.028초

에너지저장장치 도입 시 비예측 알고리즘의 경제성 분석에 관한 연구 (Study on the Economic Analysis for Non-Prediction Algorithm with the Energy Storage System)

  • 홍종석;강병욱;채희석;김재철
    • 조명전기설비학회논문지
    • /
    • 제29권5호
    • /
    • pp.94-99
    • /
    • 2015
  • Prediction algorithm of the energy storage system in accordance with the load pattern can cause economic loss in case of a failure prediction. In addition, algorithm that uses TOU(Time of Use) based on the revelation by the power electric charge which covers most simply is an inefficient operation because it is only for the purpose of reducing the peak power. In this paper, we introduced a non-prediction algorithm with a conventional TOU in order to solve this problem operating the energy storage system economic and efficient.

Linear prediction and z-transform based CDF-mapping simulation algorithm of multivariate non-Gaussian fluctuating wind pressure

  • Jiang, Lei;Li, Chunxiang;Li, Jinhua
    • Wind and Structures
    • /
    • 제31권6호
    • /
    • pp.549-560
    • /
    • 2020
  • Methods for stochastic simulation of non-Gaussian wind pressure have increasingly addressed the efficiency and accuracy contents to offer an accurate description of the extreme value estimation of the long-span and high-rise structures. This paper presents a linear prediction and z-transform (LPZ) based Cumulative distribution function (CDF) mapping algorithm for the simulation of multivariate non-Gaussian fluctuating wind pressure. The new algorithm generates realizations of non-Gaussian with prescribed marginal probability distribution function (PDF) and prescribed spectral density function (PSD). The inverse linear prediction and z-transform function (ILPZ) is deduced. LPZ is improved and applied to non-Gaussian wind pressure simulation for the first time. The new algorithm is demonstrated to be efficient, flexible, and more accurate in comparison with the FFT-based method and Hermite polynomial model method in two examples for transverse softening and longitudinal hardening non-Gaussian wind pressures.

A Non-parametric Fast Block Size Decision Algorithm for H.264/AVC Intra Prediction

  • Kim, Young-Ju
    • Journal of information and communication convergence engineering
    • /
    • 제7권2호
    • /
    • pp.193-198
    • /
    • 2009
  • The H.264/ AVC video coding standard supports the intra prediction with various block sizes for luma component and a 8x8 block size for chroma components. This new feature of H.264/AVC offers a considerably higher improvement in coding efficiency compared to previous compression standards. In order to achieve this, H.264/AVC uses the Rate-distortion optimization (RDO) technique to select the best intra prediction mode for each block size, and it brings about the drastic increase of the computation complexity of H.264 encoder. In this paper, a fast block size decision algorithm is proposed to reduce the computation complexity of the intra prediction in H.264/AVC. The proposed algorithm computes the smoothness based on AC and DC coefficient energy for macroblocks and compares with the nonparametric criteria which is determined by considering information on neighbor blocks already reconstructed, so that deciding the best probable block size for the intra prediction. Also, the use of non-parametric criteria makes the performance of intra-coding not be dependent on types of video sequences. The experimental results show that the proposed algorithm is able to reduce up to 30% of the whole encoding time with a negligible loss in PSNR and bitrates and provides the stable performance regardless types of video sequences.

Fast Intra-Prediction Mode Decision Algorithm for H.264/AVC using Non-parametric Thresholds and Simplified Directional Masks

  • Kim, Young-Ju
    • Journal of information and communication convergence engineering
    • /
    • 제7권4호
    • /
    • pp.501-506
    • /
    • 2009
  • In the H.264/ AVC video coding standard, the intra-prediction coding with various block sizes offers a considerably high improvement in coding efficiency compared to previous standards. In order to achieve this, H.264/AVC uses the Rate-distortion optimization (RDO) technique to select the best intraprediction mode for a macroblock, and it brings about the drastic increase of the computation complexity of H.264 encoder. To reduce the computation complexity and stabilize the coding performance on visual quality, this paper proposed a fast intra-prediction mode decision algorithm using non-parametric thresholds and simplified directional masks. The use of nonparametric thresholds makes the intra-coding performance not be dependent on types of video sequences and simplified directional masks reduces the compuation loads needed by the calculation of local edge information. Experiment results show that the proposed algorithm is able to reduce more than 55% of the whole encoding time with a negligible loss in PSNR and bitrates and provides the stable performance regardless types of video sequences.

도산예측을 위한 유전 알고리듬 기반 이진분류기법의 개발 (A GA-based Binary Classification Method for Bankruptcy Prediction)

  • 민재형;정철우
    • 한국경영과학회지
    • /
    • 제33권2호
    • /
    • pp.1-16
    • /
    • 2008
  • The purpose of this paper is to propose a new binary classification method for predicting corporate failure based on genetic algorithm, and to validate its prediction power through empirical analysis. Establishing virtual companies representing bankrupt companies and non-bankrupt ones respectively, the proposed method measures the similarity between the virtual companies and the subject for prediction, and classifies the subject into either bankrupt or non-bankrupt one. The values of the classification variables of the virtual companies and the weights of the variables are determined by the proper model to maximize the hit ratio of training data set using genetic algorithm. In order to test the validity of the proposed method, we compare its prediction accuracy with ones of other existing methods such as multi-discriminant analysis, logistic regression, decision tree, and artificial neural network, and it is shown that the binary classification method we propose in this paper can serve as a premising alternative to the existing methods for bankruptcy prediction.

Non-stationary VBR 트래픽을 위한 동적 데이타 크기 예측 알고리즘 (On-line Prediction Algorithm for Non-stationary VBR Traffic)

  • 강성주;원유집;성병찬
    • 한국정보과학회논문지:정보통신
    • /
    • 제34권3호
    • /
    • pp.156-167
    • /
    • 2007
  • 본 논문에서는 VBR(Variable-Bit-Rate) 트래픽의 비선형적이고 버스티한 특성을 모델화 한 GOP ARIMA(ARIMA for Group Of Pictures) 모델을 칼만 필터 알고리즘을 이용하여 실시간으로 예측하는 기법을 제안한다. 칼만 필터를 이용한 예측 기법은 GOP ARIMA의 상태공간 모델링 과정과 향후 N초 간의 트래픽을 예측하는 과정으로 구성된다. 실험을 위해 GOP의 크기가 각각 15인 세 가지 종류의 MPEG VBR 트래픽(뉴스, 드라마, 스포츠)을 제작하였고, 칼만 필터를 이용한 세 가지 종류의 트래픽의 예측 결과를 선형 예측법과 이중 지수 평활법을 이용해 예측한 결과와 비교해 예측 성능이 상대적으로 우수함을 확인할 수 있었다. 또한 예측값에 신뢰 구간을 설정하는 신뢰 구간 분석법을 통해 트래픽 관점에서 장면 변화를 예측하는 방법을 제시하였다. 본 논문의 칼만 필터 기반의 예측 알고리즘은 MPEG 기반 VBR 트래픽을 비롯한 기타 인터넷 트래픽을 실시간으로 예측하는 방법과 이를 이용해 인터넷 서버의 설계 및 자원 할당 정책 등을 위한 트래픽 엔지니어링 연구에 기여할 수 있을 것이다.

MPEG VBR 트래픽을 위한 GOP ARIMA 기반 대역폭 예측기법 (GOP ARIMA based Bandwidth Prediction for Non-stationary VBR Traffic)

  • 강성주;원유집
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.301-303
    • /
    • 2004
  • In this work, we develop on-line traffic prediction algorithm for real-time VBR traffic. There are a number of important issues: (i) The traffic prediction algorithm should exploit the stochastic characteristics of the underlying traffic and (ii) it should quickly adapt to structural changes in underlying traffic. GOP ARIMA model effectively addresses this issues and it is used as basis in our bandwidth prediction. Our prediction model deploy Kalman filter to incorporate the prediction error for the next prediction round. We examine the performance of GOP ARIMA based prediction with linear prediction with LMS and double exponential smoothing. The proposed prediction algorithm exhibits superior performam againt the rest.

  • PDF

이미지 보간기법의 성능 개선을 위한 비국부평균 기반의 후처리 기법 (Non-Local Mean based Post Processing Scheme for Performance Enhancement of Image Interpolation Method)

  • 김동형
    • 디지털산업정보학회논문지
    • /
    • 제16권3호
    • /
    • pp.49-58
    • /
    • 2020
  • Image interpolation, a technology that converts low resolution images into high resolution images, has been widely used in various image processing fields such as CCTV, web-cam, and medical imaging. This technique is based on the fact that the statistical distributions of the white Gaussian noise and the difference between the interpolated image and the original image is similar to each other. The proposed algorithm is composed of three steps. In first, the interpolated image is derived by random image interpolation. In second, we derive weighting functions that are used to apply non-local mean filtering. In the final step, the prediction error is corrected by performing non-local mean filtering by applying the selected weighting function. It can be considered as a post-processing algorithm to further reduce the prediction error after applying an arbitrary image interpolation algorithm. Simulation results show that the proposed method yields reasonable performance.

Model selection algorithm in Gaussian process regression for computer experiments

  • Lee, Youngsaeng;Park, Jeong-Soo
    • Communications for Statistical Applications and Methods
    • /
    • 제24권4호
    • /
    • pp.383-396
    • /
    • 2017
  • The model in our approach assumes that computer responses are a realization of a Gaussian processes superimposed on a regression model called a Gaussian process regression model (GPRM). Selecting a subset of variables or building a good reduced model in classical regression is an important process to identify variables influential to responses and for further analysis such as prediction or classification. One reason to select some variables in the prediction aspect is to prevent the over-fitting or under-fitting to data. The same reasoning and approach can be applicable to GPRM. However, only a few works on the variable selection in GPRM were done. In this paper, we propose a new algorithm to build a good prediction model among some GPRMs. It is a post-work of the algorithm that includes the Welch method suggested by previous researchers. The proposed algorithms select some non-zero regression coefficients (${\beta}^{\prime}s$) using forward and backward methods along with the Lasso guided approach. During this process, the fixed were covariance parameters (${\theta}^{\prime}s$) that were pre-selected by the Welch algorithm. We illustrated the superiority of our proposed models over the Welch method and non-selection models using four test functions and one real data example. Future extensions are also discussed.

실시간 감시 시스템을 위한 사전 무학습 능동 특징점 모델 기반 객체 추적 (Non-Prior Training Active Feature Model-Based Object Tracking for Real-Time Surveillance Systems)

  • 김상진;신정호;이성원;백준기
    • 대한전자공학회논문지SP
    • /
    • 제41권5호
    • /
    • pp.23-34
    • /
    • 2004
  • 본 논문에서는 사전학습이 필요 없는 능동 특징점 모델(non-prior training active feature model; NPT AFM) 기반에서 광류(optical flow)를 이용한 객체추적 기술을 제안한다. 제안한 알고리듬은 비정형 객체에 대한 분석[1]에 초점을 두고 있으며, 실시간에서 NPT-AFM을 사용한 강건한 추적을 가능하게 한다. NPT-AFM 알고리듬은 관심 객체의 위치를 파악하는 과정 (localization)과 이전 프레임 정보와 현재 프레임 정보를 이용하여, 객체의 위치를 예측(prediction), 보정(correction)하는 과정으로 나눌 수 있다 위치 파악 과정에서는 움직임 분할(motion segmentation)을 수행한 후 개선된 Shi-Tomasi의 특징점 추적 알고리듬[2]을 사용 하였다. 예측 및 보정 과정에서는 광류 정보를 사용하여 특징점을 추적하고[3] 만약, 특징점이 적절히 추적 되지 않거나 추적에 실패하면 특징점들의 시간(temporal), 공간(spatial)적 정보를 이용하여 예측, 보정하게 된다. 객체의 형태 (shape)대신 특징점을 사용하였으며, 객체를 추적하는 과정에서 특징점들은 능동 특징점 모델(active feature model; AFM)을 위한 학습 집합(training sets)의 요소로 갱신된다. 실험결과, 제안한 NPT-AF% 기반 추적 알고리듬은 실시간에서 비정형 객체를 추적하는데 강건함을 보석준다.