• Title/Summary/Keyword: Non-Linear System

Search Result 1,801, Processing Time 0.035 seconds

Performance Analysis for Group Delay and Non-linear Characteristics in High Speed Data Satellite Communication System (초고속 위성통신 시스템의 군 지연 및 비 선형 특성에 대한 영향 분석)

  • 김영완;송윤정;김내수
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.113-116
    • /
    • 2000
  • The effect due to group delay and non linear characteristics in high speed data satellite channel was represented in this paper. Based on the modeling of group delay and non linear characteristics the performance was analyzed in ka band satellite channel. The group delay and non-linear characteristics in high speed data transmission severely affect the system performance. The more Eb/No is required to satisfy the required system performance. The optimum operating points of HDR satellite transmission system are implemented by considering analyzed results for channel characteristics

  • PDF

A STOCHASTIC EVALUATION METHOD OF ACOUSTIC SYSTEMS BASED ON EQUIVALENT ZERO-MEMORY TYPE NON-LINEAR SYSTEM

  • Minamihara, Hideo;Ohta, Mitsuo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.830-835
    • /
    • 1994
  • In this paper, a new method of statistically evaluating an output response probability distribution of a memory type non-linear system is practically derived based on a zero-memory type non-linear equivalent system. That is, first, the objective system is approximately and functionally separated into two functional parts, i.e., a zero-memory type non-linear part and a memory type linear part according to the well-known Wiener's idea. A whole mathematical frame of the output probability distribution is evaluated in an approximate but generalized form, based on the equivalent zero-memory type non-linear part. The memory effects between the input and the output of the system are reflected in the statistical parameters and the expansion coefficients.

  • PDF

A Study on the Stability Analysis and Non-linear Forced Torsional Vibration for the Dngine Shafting System with Viscous Damper (점성댐퍼를 갖는 엔진 축계의 안정성 해석 및 비선형 비틀림강제진동)

  • 박용남;하창우;김의간;전효중
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.282-287
    • /
    • 1996
  • The non-linear torsional vibrations of the propulsion shafting system with viscous damper are considered. The motion is modeled by non-linear differential equations of second order. the equivalent system is modeled by two mass softening system with Duffing's oscillator. The steady state response of a equivalent system is analyzed for primary resonance only. Harmonic balance method as a non-linear vibration analysis technique is used. Jump phenomena are explained. The primary unstable region obtained by the Mathieu equation is investigated. Both theoretical and measured results of the propulsion shafting system are compared with and evaluated. As a result of comparisons with both data, it was confirmed that Duffing's oscillator can be used as a analysis method in the modeling of the propulsion shafting system attached viscous damper with non-linear stiffness.

  • PDF

A Study on the Non-linear Forced Torsional Vibration for Propulsion Shaftings with Multi-Degree-of-Freedom System (기관축계의 비선형 다자유도 강제 비틀림진동에 관한 연구)

  • 김수철;이문식;장민오;김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.7-14
    • /
    • 2000
  • Nowadays, the viscous damper using high viscosity oil was much to be used for engine shafting system to reduce the excessive additional stress by torsional vibration. In general, it was assumed that the viscous damper could be modelled having only damping coefficient, that is to say, whose stiffness be ignored. But it is found that there exists a jump phenomenon, as a kind of non-linear vibration, in the actual engine shafting system with a damper of high viscosity. Therefore the damper ring and the casing are modelled as two mass elastic system with a complex viscosity. Also, to analyze a non-linear phenomenon, it is assumed that the viscous damper has a linear stiffness coefficient in proportion to the angular amplitude and a non-linear stiffness coefficient in proportion to cube of the angular amplitude. For the analysis, Quasi-Newton method with BFGS(Broyden-Fletcher-Goldfarb-Shanno) formula is used. Both calculated and measured values are provided in this paper which confirm the possibility of applying non-linear theory to engine shafting system with viscous damper.

  • PDF

DS-PAM UWB System Using Non-linear Chirp Waveform

  • Shen, Hanbing;Zhang, Weihua;An, Xizhi;Kwak, Kyung-Sup
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.322-328
    • /
    • 2007
  • We propose a direct-sequence pulse-amplitude modulation (DS-PAM) ultra-wideband (UWB) system which employs a non-linear chirp waveform instead of the conventional Gaussian monocycle in this paper. In the approved frequency for UWB, there exist myriad narrowband interferers. Specifically, we focus on the mutual interference between UWB systems and 802.11a WLAN. This paper offers a method to suppress this in-band narrowband interference by introducing a kind of non-linear chirp waveform. Using the proposed non-linear chirp waveform, the effects of one or more narrowband interference sources with different frequencies can be suppressed. System performance of UWB systems in the narrowband interference environment can be improved. Computer simulations with additive white Gaussian noise successfully demonstrate an increase in performance with the proposed system as compared to traditional linear chirp systems.

  • PDF

Non-linear Chirp UWB Ranging System with Narrowband Interference Suppression Abilities

  • Shen, Hanbing;Zhang, Weihua;Kwak, Kyung-Sup
    • ETRI Journal
    • /
    • v.29 no.4
    • /
    • pp.521-523
    • /
    • 2007
  • In this letter, we analyze an ultra-wideband ranging system based on non-linear chirp waveforms with the ability of narrowband interference suppression. A number of non-linear chirp waveforms are proposed and evaluated by simulation. The results verify that the proposed schemes can suppress the Narrowband interference to a certain degree.

  • PDF

Use of Higher Order Frequency Response Functions for Non-Linear Parameter Estimation (고차 주파수응답함수를 이용한 비선형시스템의 매개변수 추정)

  • 이건명
    • Journal of KSNVE
    • /
    • v.7 no.2
    • /
    • pp.223-229
    • /
    • 1997
  • Presented is a method to estimate system parameters of a system with polynomial non-linerities from the measured higher order frequency response functions. Higher order FRFs can be measured on some restricted regions by sinusoidally exciting a non-linear system with various input amplitudes and measuring the response component at the excitation frequency. These higher order FRFs can be expressed in terms of system parameter, and the system parameters can be estimated from the measured FRFs. Since the expressions for higher order FRFs are complicated, system parameters can be estimated from them using an optimization technique. The present method has been applied to a simulated single degree of freedom system with non-linear stiffness and damping, and has estimated accurate system parameters.

  • PDF

The Direction of Improvement Non-linear Editing Software (비선형 편집 소프트웨어의 개선방향)

  • Park, Sung-Dae
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.8
    • /
    • pp.972-981
    • /
    • 2013
  • Non-linear editing is an editing method that, unlike linear editing, enables users to insert a new frame between existing frames. Non-linear editing systems are systems that support such method, and are composed of a computer, a software and a capture board that inputs/outputs video signals. Non-linear editing is used for modern television broadcasts and movie productions. Recorded footage and various graphic sources are combined into one visual content through a non-linear editing system. In this paper, we will look into functions of various non-linear editing softwares (mainly the most common of all; Adobe Premiere) as well as their merits and demerits during the editing process, and will also discuss their future Improvement direction.

Neuro-Fuzzy Identification for Non-linear System and Its Application to Fault Diagnosis (비선형 계통의 뉴로-퍼지 동정과 이의 고장 진단 시스템에의 적용)

  • 김정수;송명현;이기상;김성호
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.447-452
    • /
    • 1998
  • A fault is considered as a variation of physical parameters; therefore the design of fault detection and identification(FDI) can be reduced to the parameter identification of a non linear system and to the association of the set of the estimated parameters with the mode of faults. ANFIS(Adaptive Neuro-Fuzzy Inference System) which contains multiple linear models as consequent part is used to model non linear systems. In this paper, we proposes an FDI system for non linear systems using ANFIS. The proposed diagnositc system consists of two ANFISs which operate in two different modes (parallel-and series-parallel mode). It generates the parameter residuals associated with each modes of faults which can be further processed by additional RBF (Radial Basis function) network to identify the faults. The proposed FDI scheme has been tested by simultation on a two-tank system

  • PDF

Methods to Obtain Approximate Responses of a Non-Linear Vibration Isolation System (비선형 진동절연 시스템의 근사적 응답을 구하는 방법)

  • Lee, Gun-Myung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.23-28
    • /
    • 2020
  • A non-linear vibration isolation system composed of a non-linear spring and a linear damper was presented in a previous study. The advantage of the proposed isolator is the simple structure of the system. When the base of the isolator is harmonically excited, the response component of the mass at the excitation frequency was approximated using three different methods: linear approximation, harmonic balance, and higher-order frequency response functions (FRFs). The method using higher-order FRFs produces significantly more accurate results compared with the other methods. The error between the exact and approximate responses does not increase monotonously with the excitation amplitude and is less than 2%.