• Title/Summary/Keyword: Non-Formation

Search Result 1,963, Processing Time 0.029 seconds

Dysregulated Expression Profiles of MicroRNAs of Experimentally Induced Cerebral Aneurysms in Rats

  • Lee, Hyung-Jin;Yi, Jin-Seok;Lee, Hong-Jae;Lee, Il-Woo;Park, Ki-Cheol;Yang, Ji-Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.53 no.2
    • /
    • pp.72-76
    • /
    • 2013
  • Objective : Cerebral aneurysm (CA) is an important acquired cerebrovascular disease that can cause catastrophic results. MicroRNAs (miRNAs) are small non-coding RNAs, playing essential roles in modulating basic physiologic and pathological processes. Currently, evidences have been established about biologic relationship between miRNAs and abdominal aortic aneurysms. However, biologic roles of miRNAs in CA formation have not been explained yet. We employed microarray analysis to detect and compare miRNA expression profiles in late stage of CA in rat model. Methods : Twenty-six, 7-week-old male Sprague-Dawley rats underwent a CA induction procedure. The control animals (n=11) were fed a normal diet, and the experimental animals (n=26) were fed a normal diet with 1% normal saline for 3 months. Then, the rats were sacrificed, their cerebral arteries were dissected, and the five regions of aneurysmal dilation on the left posterior communicating artery were cut for miRNA microarrays analysis. Six miRNAs (miRNA-1, miRNA-223, miRNA-24-1-5p, miRNA-551b, miRNA-433, and miRNA-489) were randomly chosen for validation using real-time quantitative PCR. Results : Among a set of differentially expressed miRNAs, 14 miRNAs were over-expressed more than 200% and 6 miRNAs were down-expressed lower than 50% in the CA tissues. Conclusion : The results show that miRNAs might take part in CA formation probably by affecting multiple target genes and signaling pathways. Further investigations to identify the exact roles of these miRNAs in CA formation are required.

Insight into Norfloxacin Resistance of Acinetobacter oleivorans DR1: Target Gene Mutation, Persister, and RNA-Seq Analyses

  • Kim, Jisun;Noh, Jaemin;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1293-1303
    • /
    • 2013
  • Antibiotic resistance of soilborne Acinetobacter species has been poorly explored. In this study, norfloxacin resistance of a soil bacterium, Acinetobacter oleivorans DR1, was investigated. The frequencies of mutant appearance of all tested non-pathogenic Acinetobacter strains were lower than those of pathogenic strains under minimum inhibitory concentration (MIC). When the quinolone-resistance-determining region of the gyrA gene was examined, only one mutant (His78Asn) out of 10 resistant variants had a mutation. Whole transcriptome analysis using a RNA-Seq demonstrated that genes involved in SOS response and DNA repair were significantly up-regulated by norfloxacin. Determining the MICs of survival cells after norfloxacin treatment confirmed some of those cells were indeed persister cells. Ten colonies, randomly selected from among those that survived in the presence of norfloxacin, did not exhibit increased MIC. Thus, both the low mutation frequency of the target gene and SOS response under norfloxacin suggested that persister formation might contribute to the resistance of DR1 against norfloxacin. The persister frequency increased without a change in MIC when stationary phase cells, low growth rates conditions, and growth-deficient dnaJ mutant were used. Taken together, our comprehensive approach, which included mutational analysis of the target gene, persister formation assays, and RNA sequencing, indicated that DR1 survival when exposed to norfloxacin is related not only to target gene mutation but also to persister formation, possibly through up-regulation of the SOS response and DNA repair genes.

Filtering Performance Analyizing for Relative Navigation Using Single Difference Carrier-Phase GPS (GPS 신호의 단일차분을 이용한 편대위성의 상대위치 결정을 위한 필터링 성능 분석)

  • Park, In-Kwan;Park, Sang-Young;Choi, Kyu-Hong;Choi, Sung-Ki;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.3
    • /
    • pp.283-290
    • /
    • 2008
  • Satellite formation flying can provide the platform for interferometric observation to acquire the precise data and ensure the flexibility for space mission. This paper presents development and verification of an algorithm to estimate the baseline between formation flying satellites. To estimate a baseline(relative navigation) in real time, EKF(Extended Kalman Filter) and UKF(Unscented Kalman Filter) are used. Measurements for updating a state-vector in Kalman Filter are GPS single difference data. In results, The position errors in estimated baseline are converged to less than ${\pm}1m$ in both EKF and UKF. And as using the two types of Kalman filter, it is clear that the unscented Kalman filter shows a relatively better performance than the extended Kalman filter by comparing an efficiency to the model which has a non-linearity.

Phenotypic and Cell Wall Proteomic Characterization of a DDR48 Mutant Candida albicans Strain

  • El Khoury, Pamela;Salameh, Carell;Younes, Samer;Awad, Andy;Said, Yana;Khalaf, Roy A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.11
    • /
    • pp.1806-1816
    • /
    • 2019
  • Candida albicans is an opportunistic fungus possessing multiple virulence factors controlling pathogenicity. Cell wall proteins are the most important among these factors, being the first elements contacting the host. Ddr48 is a cell wall protein consisting of 212 amino acids. A DDR48 haploinsufficient mutant strain was previously found necessary for proper oxidative stress response and drug resistance. In this study, we aimed to further elucidate the role of Ddr48 by performing additional phenotypic characterization assays. A combinatory proteomic and bioinformatics approach was also undertaken to determine differentially expressed cell wall proteins. Results showed that the mutant strain exhibited a 10% decrease in adhesion mirrored by a 20% decrease in biofilm formation, and slight sensitivity to menadione, diamide, and SDS. Both strains showed similar hyphae formation, virulence, temperature tolerance, and calcofluor white and Congo red sensitivities. Furthermore, a total of 8 and 10 proteins were identified exclusively in the wild-type strain grown under filamentous and non-filamentous conditions respectively. Results included proteins responsible for superoxide stress resistance (Sod4 and Sod6), adhesion (Als3, Hyr4, Pmt1, and Utr2), biofilm formation (Hsp90, Ece1, Rim9, Ipp1, and Pra1) and cell wall integrity (Utr2 and Pga4). The lack of detection of these proteins in the mutant strain correlates with the observed phenotypes.

Formation of Nickel Silicide from Atomic Layer Deposited Ni film with Ti Capping layer

  • Yun, Sang-Won;Lee, U-Yeong;Yang, Chung-Mo;Na, Gyeong-Il;Jo, Hyeon-Ik;Ha, Jong-Bong;Seo, Hwa-Il;Lee, Jeong-Hui
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2007.06a
    • /
    • pp.193-198
    • /
    • 2007
  • The NiSi is very promising candidate for the metallization in 60nm CMOS process such as FUSI(fully silicided) gate and source/drain contact because it exhibits non-size dependent resistance, low silicon consumption and mid-gap workfunction. Ni film was first deposited by using ALD (atomic layer deposition) technique with Bis-Ni precursor and $H_2$ reactant gas at $220^{\circ}C$ with deposition rate of $1.25{\AA}/cycle$. The as-deposited Ni film exhibited a sheet resistance of $5{\Omega}/{\square}$. RTP (repaid thermal process) was then performed by varying temperature from $400^{\circ}C$ to $900^{\circ}C$ in $N_2$ ambient for the formation of NiSi. The process window temperature for the formation of low-resistance NiSi was estimated from $600^{\circ}C$ to $800^{\circ}C$ and from $700^{\circ}C$ to $800^{\circ}C$ with and without Ti capping layer. The respective sheet resistance of the films was changed to $2.5{\Omega}/{\square}$ and $3{\Omega}/{\square}$ after silicidation. This is because Ti capping layer increases reaction between Ni and Si and suppresses the oxidation and impurity incorporation into Ni film during silicidation process. The NiSi films were treated by additional thermal stress in a resistively heated furnace for test of thermal stability, showing that the film heat-treated at $800^{\circ}C$ was more stable than that at $700^{\circ}C$ due to better crystallinity.

  • PDF

Efficient Fusion Method to Recognize Targets Flying in Formation (편대비행 표적식별을 위한 효과적인 ISAR 영상 합성 방법)

  • Kim, Min;Kang, Ki-Bong;Jung, Joo-Ho;Kim, Kyung-Tae;Park, Sang-Hong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.8
    • /
    • pp.758-765
    • /
    • 2016
  • This paper proposes a novel method for the recognition of the inverse synthetic aperture radar(ISAR) image of multiple targets flying in formation. Rather than separating the ISAR image of each target, the proposed method combines an ISAR image obtained by fusing the ISAR images in the training database. Fusion is conducted by optimizing the non-linear problem whose parameters are the aspect angle and the target location. Assuming that the aspect angle is properly estimated, the proposed method estimates the number of the targets and their locations by optimizing the template matching using PSO. In simulations using the F-16 scale model, the efficiency of the proposed method was demonstrated by yielding the ISAR image identical to that of targets in formation.

Root metabolic cost analysis for root plasticity expression under mild drought stress

  • Kano-Nakata, Mana;Mitsuya, Shiro;Inukai, Yoshiaki;Yamauchi, Akira
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.328-328
    • /
    • 2017
  • Drought is a major limiting factor that reduces rice production and occurs often especially under recent climate change. Plants have the ability to alter their developmental morphology in response to changing environment, which is known as phenotypic plasticity. In our previous studies, we found that one chromosome segment substitution line (CSSL50 derived from Nipponbare and Kasalath crosses) showed no differences in shoot and root growth as compared with the recurrent genotype, Nipponbare under non-stress condition but showed greater growth responses compared with Nipponbare under mild drought stress condition. We hypothesized that reducing root respiration as metabolic cost, which may be largely a consequence of aerenchyma formation would be one of the key mechanisms for root plasticity expression. This study aimed to evaluate the root respiration and aerenchyma formation under various soil moisture conditions among genotypes with different root plasticity. CSSL50 together with Nipponbare and Kasalath were grown under waterlogged conditions (Control) and mild drought stress conditions (20% of soil moisture content) in a plastic pot ($11cm{\times}14cm$, ${\varphi}{\times}H$) and PVC tube ($3cm{\times}30cm$, ${\varphi}{\times}H$). Root respiration rate was measured with infrared gas analyzer (IRGA, GMP343, Vaisala, Finland) with a closed static chamber system. There was no significant difference between genotypes in control for shoot and root growth as well as root respiration rate. In contrast, all the genotypes increased their root respiration rates in response to mild drought stress. However, CSSL50 showed lower root respiration rate than Nipponbare, which was associated by higher root aerenchyma formation that was estimated based on internal gas space (porosity) under mild drought stress conditions. Furthermore, there were significant negative correlations between root length and root respiration rate. These results imply that reducing the metabolic cost (= root respiration rate) is a key mechanism for root plasticity expression, which CSSL50 showed under mild drought.

  • PDF

Effects of Ischemic Preconditioning of Different Intraoperative Ischemic Times of Vascularized Bone Graft Rabbit Models

  • Halim, Ahmad Sukari;Wan Ahmad Kamal, Wan Syazli Rodzaian;Noor, Norizal Mohd;Abdullah, Shafie
    • Archives of Plastic Surgery
    • /
    • v.40 no.6
    • /
    • pp.687-696
    • /
    • 2013
  • Background Ischemic preconditioning has been shown to improve the outcomes of hypoxic tolerance of the heart, brain, lung, liver, jejunum, skin, and muscle tissues. However, to date, no report of ischemic preconditioning on vascularized bone grafts has been published. Methods Sixteen rabbits were divided into four groups with ischemic times of 2, 6, 14, and 18 hours. Half of the rabbits in each group underwent ischemic preconditioning. The osteomyocutaneous flaps consisted of the tibia bone, from which the overlying muscle and skin were raised. The technique of ischemic preconditioning involved applying a vascular clamp to the pedicle for 3 cycles of 10 minutes each. The rabbits then underwent serial plain radiography and computed tomography imaging on the first, second, fourth, and sixth postoperative weeks. Following this, all of the rabbits were sacrificed and histological examinations were performed. Results The results showed that for clinical analysis of the skin flaps and bone grafts, the preconditioned groups showed better survivability. In the plain radiographs, except for two non-preconditioned rabbits with intraoperative ischemic times of 6 hours, all began to show early callus formation at the fourth week. The computed tomography findings showed more callus formation in the preconditioned groups for all of the ischemic times except for the 18- hour group. The histological findings correlated with the radiological findings. There was no statistical significance in the difference between the two groups. Conclusions In conclusion, ischemic preconditioning improved the survivability of skin flaps and increased callus formation during the healing process of vascularized bone grafts.

FUNS - Filaments, the Universal Nursery of Stars. I. Physical Properties of Filaments and Dense Cores in L1478

  • Chung, Eun Jung;Kim, Shinyoung;Soam, Archana;Lee, Chang Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.45.1-45.1
    • /
    • 2018
  • Formation of filaments and subsequent dense cores in ISM is one of the essential questions to address in star formation. To investigate this scenario in detail, we recently started a molecular line survey namely 'Filaments, the Universal Nursery of Stars (FUNS)' toward nearby filamentary clouds in Gould Belt using TRAO 14m single dish telescope equipped with a 16 multi-beam array. In the present work, we report the first look results of kinematics of a low mass star forming region L1478 of California molecular cloud. This region is found to be consisting of long filaments with a hub-filament structure. We performed On-The-Fly mapping observations covering ~1.1 square degree area of this region using C18O(1-0) as a low density tracer and 0.13 square degree area using N2H+(1-0) as a high density tracer, respectively. CS (2-1) and SO (32-21) were also used simultaneously to map ~290 square arcminute area of this region. We identified 10 filaments applying Dendrogram technique to C18O data-cube and 13 dense cores using FellWalker and N2H+ data set. Basic physical properties of filaments such as mass, length, width, velocity field, and velocity dispersion are derived. It is found that filaments in L~1478 are velocity coherent and supercritical. Especially the filaments which are highly supercritical are found to have dense cores detected in N2H+. Non-thermal velocity dispersions derived from C18O and N2H+ suggest that most of the dense cores are subsonic or transonic while the surrounding filaments are transonic or supersonic. We concluded that filaments in L~1478 are gravitationally unstable which might collapse to form dense cores and stars. We also suggest that formation mechanism can be different in individual filament depending on its morphology and environment.

  • PDF

Microstructure of Squeeze-cast Aluminum Matrix Composite Reinforced by Fine Steel Wires (용탕단조한 미세강선 보강 알루미늄 복합재료의 미세조직에 대한 고찰)

  • Jeong, Bong-Yong;Lee, In-Woo;Park, Heung-Il;Kim, Jun-Su;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.14 no.5
    • /
    • pp.455-463
    • /
    • 1994
  • Aluminum matrix composites reinforced by fine steel wires were fabricated by squeeze casting process. Preforms made of fine steel wires were prepared with different surface conditions, namely uncoated(TN), carbo-nitriding treated(TT), and brass coated(TA). Squeeze casting were performed under the pressure of $1500kg/cm^2$ for 3min. during solidification, and pouring temp. of the melt being $750^{\circ}C$ and the steel mold being preheated at $250^{\circ}C$. Microstructural characteristics were evaluated, particularly concerned with the effect of the surface conditions of the preforms. The results obtained from this study are like these. TN specimens show partially non-wetted regions, due to easy formation of oxides on the surface of the fine steel wires. TT specimens show no interfacial reaction between the steel wires and the aluminum alloy matrix, possibly due to the formation of carbo-nitrided zone on the surface of the steel wires. TA specimens show excellent wettabillity between the reinforced steel wires and the aluminum alloy matrix and very thin interfacial zone is formed between them. During the solution hardening treatment of TA specimens, thickness of the interfacial reaction zones were increased with the solution treating time. TA specimens show typical ductile fracture in tensile test, but TT specimens show brittle fracture possibly due to the formation of the brittle hard surface on the steel wires during carbo-nitriding treatments. TA specimens which were reinforced with 40 vol.% of the fine steel wires exhibit high tensile strength of $77.1kgf/mm^2$ and impact value of $8.1kgf-m/cm^2$.

  • PDF