• Title/Summary/Keyword: Non-Circular Arch

Search Result 16, Processing Time 0.028 seconds

Non-periodic motions and fractals of a circular arch under follower forces with small disturbances

  • Fukuchi, Nobuyoshi;Tanaka, Takashi
    • Steel and Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.87-101
    • /
    • 2006
  • The deformation and dynamic behavior mechanism of submerged shell-like lattice structures with membranes are in principle of a non-conservative nature as circulatory system under hydrostatic pressure and disturbance forces of various types, existing in a marine environment. This paper deals with a characteristic analysis on quasi-periodic and chaotic behavior of a circular arch under follower forces with small disturbances. The stability region chart of the disturbed equilibrium in an excitation field was calculated numerically. Then, the periodic and chaotic behaviors of a circular arch were investigated by executing the time histories of motion, power spectrum, phase plane portraits and the Poincare section. According to the results of these studies, the state of a dynamic aspect scenario of a circular arch could be shifted from one of quasi-oscillatory motion to one of chaotic motion. Moreover, the correlation dimension of fractal dynamics was calculated corresponding to stochastic behaviors of a circular arch. This research indicates the possibility of making use of the correlation dimension as a stability index.

Stability assessment of unlined tunnels with semicircular arch and straight sides in anisotropic clay

  • Bibhash Kumar;Jagdish P. Sahoo
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.149-163
    • /
    • 2023
  • This paper presents stability evaluation of unlined tunnels with semi-circular arch and straight sides (SASS) driven in non-homogeneous and anisotropic undrained clay. Numerical analysis has been conducted based on lower bound finite element limit analysis with second order cone programming under plane strain condition. The solutions will be used for the assessment of stability of unlined semi-circular arch tunnels and tunnels in which semi-circular roof is supported over rectangular/square sections. The stability charts have been generated in terms of a non-dimensional factor considering linear variation in undrained anisotropic strength for normally consolidated and lightly over consolidated clay with depth, and constant undrained anisotropic strength for heavily over-consolidated clay across the depth. The effect of normalized surcharge pressure on ground surface, non-homogeneity and anisotropy of clay, tunnel cover to width ratio and height to width ratio of tunnel on the stability factor and associated zone of shear failure at yielding have been examined and discussed. The geometry of tunnel in terms of shape and size, and non-homogeneity and anisotropy in undrained strength of clay has been observed to influence significantly the stability of unlined SASS tunnels.

Free Vibrations of Non-Circular Arches with Elastic Supports (탄성지점을 갖는 변화곡률 아치의 자유진동)

  • Oh, Sang-Jin;Kim, Gwon-Sik;Park, Kwang-Kyou
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.340-343
    • /
    • 2007
  • The differential equations governing free, in-plane vibrations of non-circular arches with the translational (radial and tangential directions) and rotational springs at the ends, including the effects of rotatory inertia, shear deformation and axial deformation, are solved numerically using the corresponding boundary conditions. The lowest four natural frequencies for the parabolic geometry are calculated over a range of non-dimensional system parameters: the arch rise to span length ratio, the slenderness ratio, and the translational and rotational spring parameters.

  • PDF

Effects of Partially Distributed Step Load on Dynamic Response of the Plane Circular Arches (분포하중이 평면 원호 아치의 동적 응답에 미치는 영향)

  • 조진구;박근수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.4
    • /
    • pp.89-96
    • /
    • 2001
  • In this study non-linear finite element analysis of dynamic response of steel arch under partially distributed dynamic load was discussed. Material and geometric non-linearities were included in finite element formulation and steel behavior was modeled with Von Mises yield criteria. Either radial or vertical dynamic load was dealt in numerical examples. Normal arch and arch with maximum shape imperfection of L/11,000 were studied. The analysis results showed that maximum displacement at the center of arch was occurred when 70% of arch span was loaded. The maximum displacement at a quarter of arch span was occurred when 50% of arch span was loaded and the displacement was larger than that of center of arch. Ratio of arch rise to arch span within 0.2∼-.3 seems to be appropriate for arch under radial or vertical load.

  • PDF

Free Vibrations of Tapered Circular Arches with Constant Volume (일정체적 변단면 원호형 아치의 자유진동)

  • Lee, Byoung-Koo;Lee, Tae-Eun;Yoon, Hee-Min;Choi, Jong-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.2
    • /
    • pp.144-152
    • /
    • 2010
  • This paper deals with free vibrations of the tapered circular arches with constant volume, whose cross sectional shape is the solid regular polygon. Volumes of the objective arches are always held constant regardless shape functions of the cross-sectional depth. The shape functions are chosen as the linear, parabolic and sinusoidal ones. Ordinary differential equations governing free vibrations of such arches are derived and solved numerically for determining the natural frequencies. In the numerical examples, hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered. As the numerical results, the relationships between non-dimensional frequency parameters and various arch parameters such as rise ratio, section ratio, side number, volume ratio and taper type are reported in tables and figures.

Test and Analysis of Triaxially Braided Composite Circular Arch under Three-Point Bending

  • Nega, Biruk F.;Woo, Kyeongsik;Lee, Hansol
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.249-257
    • /
    • 2019
  • In this paper, the buckling behavior of triaxially braided circular arch with monosymmetric open section subjected to three-point bending was studied experimentally and numerically. First, test specimens were manufactured using vacuum assisted resin transfer molding (VARTM). Then the specimen was tested under three-point bending to determine the ultimate buckling strength. Before performing the numerical analysis, effective material properties of the braided composite were obtained through micro-meso scale analysis virtual testing validated with available test results. Then linear buckling analysis and geometrically non-linear post buckling analysis, established to simulate the test setup, were performed to study the buckling behavior of the composite frame. Analysis results were compared with experimentally obtained ones for verification. The effect of manufacturing defects of tow misalignment, irregular surface and resin rich region, and uncertainties during test setup were studied using numerical models. From the numerical analyses performed it was observed that both manufacturing defect and uncertainties had effect on the buckling behavior and strength.

Free Vibrations of Tapered Parabolic Arches Considering Rotatory Inertia and Shear Deformation (회전관성 및 전단변형을 고려한 변단면 포물선 아치의 자유진동)

  • 오상진;박광규;최규문;이종국
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.846-851
    • /
    • 2003
  • The differential equations governing free, in-plane vibrations of non-circular arches with non-uniform cross-section, including the effects of rotatory inertia, shear deformation and axial deformation, are derived and solved numerically to obtain frequencies. The lowest four natural frequencies are calculated for the prime parabolic arches with hinged-hinged, hinged-clamped, and clamped-clamped end constraints. Three general taper types for rectangular section are considered. A wide range of arch rise to span length ratios, slenderness ratios, and section ratios are considered. The agreement with results determined by means of a finite element method is good from an engineering viewpoint.

  • PDF

Long-term structural analysis and stability assessment of three-pinned CFST arches accounting for geometric nonlinearity

  • Luo, Kai;Pi, Yong-Lin;Gao, Wei;Bradford, Mark A.
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.379-397
    • /
    • 2016
  • Due to creep and shrinkage of the concrete core, concrete-filled steel tubular (CFST) arches continue to deform in the long-term under sustained loads. This paper presents analytical investigations of the effects of geometric nonlinearity on the long-term in-plane structural performance and stability of three-pinned CFST circular arches under a sustained uniform radial load. Non-linear long-term analysis is conducted and compared with its linear counterpart. It is found that the linear analysis predicts long-term increases of deformations of the CFST arches, but does not predict any long-term changes of the internal actions. However, non-linear analysis predicts not only more significant long-term increases of deformations, but also significant long-term increases of internal actions under the same sustained load. As a result, a three-pinned CFST arch satisfying the serviceability limit state predicted by the linear analysis may violate the serviceability requirement when its geometric nonlinearity is considered. It is also shown that the geometric nonlinearity greatly reduces the long-term in-plane stability of three-pinned CFST arches under the sustained load. A three-pinned CFST arch satisfying the stability limit state predicted by linear analysis in the long-term may lose its stability because of its geometric nonlinearity. Hence, non-linear analysis is needed for correctly predicting the long-term structural behaviour and stability of three-pinned CFST arches under the sustained load. The non-linear long-term behaviour and stability of three-pinned CFST arches are compared with those of two-pinned counterparts. The linear and non-linear analyses for the long-term behaviour and stability are validated by the finite element method.

Free Vibrations of Shear Deformable Circular Arches with Rotationally Flexible Supports (전단변형을 고려한 회전 가능한 지점을 갖는 원호 아치의 자유진동)

  • Oh, Sang-Jin;Yoon, Hee-Min;Park, Kwang-Kyou
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1181-1184
    • /
    • 2007
  • The differential equations governing free, in-plane vibrations of linearly elastic circular arches with rotationally flexible supports, including the effects of rotatory inertia, shear deformation and axial deformation, are solved numerically using the corresponding boundary conditions. The lowest four natural frequencies and the corresponding mode shapes are obtained over a range of non-dimensional system parameters: the subtended angle, the slenderness ratio, and the rotational spring stiffness.

  • PDF

Vibration Analysis for Circular Arches with Variable Cross-section by using Differential Transformation and Generalized Differential Quadrature (미분변환법과 일반화 미분구적법을 이용한 가변단면 원호 아치의 진동 해석)

  • Shin, Young Jae;Kwon, Kyung Mun;Yun, Jong Hak;Yoo, Yeong Chan;Lee, Ju Hyung
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.81-89
    • /
    • 2004
  • The vibration analysis of the circular arch as a member of a structure has been an important subject of mechanics due to its various applications to many industrial fields. In particular, circular arches with variable cross section are widely used to optimize the distribution of weight and strength and to satisfy special architectural and functional requirements. The Generalized Differential Quadrature Method (GDQM) and Differential Transformation Method (DTM) were recently proposed by Shu and Zou, respectively. In this study, GDQM and DTM were applied to the vibration analysis of circular arches with variable cross section. The governing equations of motion for circular arches with variable cross section were derived. The concepts of Differential Transformation and Generalized Differential Quadrature were briefly introduced. The non-dimensionless natural frequencies of circular arches with variable cross section were obtained for various boundary conditions. The results obtained using these methods were compared with those of previous works. GDQM and DTM showed fast convergence, accuracy, efficiency, and validity in solving the vibration problem of circular arches with variable cross section.