• Title/Summary/Keyword: Non-Cement Mortar

Search Result 85, Processing Time 0.03 seconds

Effects of Calcium Aluminate Compounds on Hydration of BFS

  • Song, Hyeon-jin;Kang, Seung-Min;Jeon, Se-Hoon;Kim, Jung-Won;Song, Myong-Shin
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.483-488
    • /
    • 2015
  • Blast furnace slag(BFS) is well known for its hardening mechanism in ordinary Portland cement with alkali activation due to its latent hydraulic property. The possibility of using calcium compound as activator for BFS has been investigated in this study. The hydration properties of calcium compound activated BFS binders were explored using heat of hydration, powder X-ray diffraction and compressive strength testing. Heat of hydration results indicate that the hydration heat of BFS is lower than OPC paste by about 50%. And ettringite as hydration product was formed continuously as the calcium sulfate was decreased. The maximum compressive strength of hardened BFS mortar at 28 days is confirmed to be 83% as compared with hardened OPC mortar.

Strength Properties of Loess Mortar Using Eco-friendly Loess Binder (친환경 황토 고화재를 사용한 황토 모르타르의 강도 특성)

  • Lee, Seung-Han;Jung, Yong-Wook;Jang, Seok-Soo;Yeo, In-Dong;Choi, Jong-Oh
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.285-286
    • /
    • 2010
  • The purpose of this study aimed to evaluate properties of fluidity, compressive strength and bending strength of Loess mortar using non-cement binder to solve indentation due to reduction of compressive strength on exiting Loess bicycle load.

  • PDF

Durability Properties of Loess Mortar Using Eco-friendly Loess Binder (친환경 황토 고화재를 사용한 황토 모르타르의 내구 특성)

  • Jung, Yong-Wook;Lee, Seung-Han;Jang, Seok-Soo;Yeo, In-Dong;Choi, Jong-Oh
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.287-288
    • /
    • 2010
  • The purpose of this study aimed to evaluate properties of water resistance, disease of freezing and thawing and XRF of Loess mortar using non-cement binder to solve reduction of durability by freezing and thawing on exiting Loess bicycle load.

  • PDF

A Study on the Strength of Mortar Substituted Fine Aggregate by Waste Glass Color (폐유리 색상별 잔골재를 치환한 모르타르의 강도에 관한 연구)

  • Jo, Su Yeon;Kim, Geon U;Shin, Joung Hyeon;Jung, Ui In;Kim, Bong Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.112-113
    • /
    • 2021
  • Since natural sand is being depleted, research is being conducted to use glass similar to sand as an aggregate. When non-reusable waste glass is crushed and used as fine aggregate, it is known that alkali of cement and silica of glass react to cause an alkali aggregate reaction. The purpose of this study is to provide basic data by studying the strength according to color to use waste glass as fine aggregate. When 10% was replaced, both flexural and compressive strength showed strength values similar to those of Plain. When replaced by 20% and 30%, the 7-day intensity was higher than that of Plain. In addition, colorless glass was found to have the highest strength among glass colors. More research is expected to be needed to become a fine aggregate of waste glass.

  • PDF

Adhesive Properties of High Flowable SBR-modified Mortar for Concrete Patching Material Dependent on Surface Water Ratio of Concrete Substrate (콘크리트 피착체의 표면수율에 따른 단면복구용 고유동성 SBR 개질 모르타르의 부착특성)

  • Do, Jeong Yun;Kim, Doo Kie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.124-134
    • /
    • 2013
  • This study investigated the effect of surface water on concrete substrate on adhesive strength in tension of very high flowable SBR-modified cement mortar. The specimens were prepared with proportionally mixing SBR latex, ordinary portland cement, silica sand, superplasticizer and viscosity enhancing agent. Polymer cement ratio (P/C) were 10, 20, 30, 50 and 75% and the weight ratio of fine aggregate to cement were 1:1 and 1:3. The specimens obtained with different P/C and C:F were characterized by unit weight, flow test, crack resistance and adhesion test. After basic tests, two mixtures of P/C=20% and 30% in case of C:F=1:1, and one mixture of P/C=50% in case of C:F=1:3 were selected, respectively. These three selected specimens were studied about the effect of surface water evenly sprayed on concrete substrate by a amount of 0, 0.006, 0.012, 0.017, 0.024g per unit area ($cm^2$) of concrete substrate surface The results show that surface water on concrete substrate increases the adhesive strength in tension of high flowable SBR-modified cement mortar and improve the flowability compared to the non-sprayed case.

A Study on the Performance Improvement and Long-Term Strength Properties of Eco-cement Concrete (에코시멘트 콘크리트의 장기강도 특성 및 성능 향상 방안에 관한 연구)

  • Park, Kwang-Min;Lee, Gun-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.817-826
    • /
    • 2011
  • Concrete using eco-cement has a problem with long-term strength development. However, currently, a long-term strength development mechanism is not confirmed, resulting in a lack of application of eco-cement in construction fields. In this study, the curing humidity influence on development in long-term strength of concrete using eco-cement and the relationship between strength and pore structure were examined. The results showed that wet cured eco-cement with a high water/cement ratio showed serious long-term strength reduction due to non-reduction of pore volume (pore size over 10 nm) in mortar caste with eco-cement. Also, the study results on improvement of long-term strength of eco-cement by partial replacement with ordinary portland cement and finely-ground fly ash showed that both of these alternatives improved long-term strength of concrete caste with eco-cement due to gradual refinement of their micro-structure.

Quality Properties of Zero Cement Blast Furnace Slag Mortar Using the Recycled Fine Aggregates Depending on Mixing Factors (순환잔골재를 사용한 무 시멘트 고로슬래그 모르터의 배합요인에 따른 품질특성)

  • Han, Cheon-Goo;Son, Seok-Heon;Park, Kyung-Taek
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.70-77
    • /
    • 2010
  • This study is to investigate experimentally the influence of mixing factors, such as a mortar mix proportion of non-cement mortar, flow, and W/B, on quality characteristics of blast furnace slag powder mortar incorporating dry type recycled fine aggregates. In the characteristics of fresh mortar, the W/B increased according to the increase in the flow due to the increase in water contents, but air contents decreased due to loss of air contrary to the increase in the W/B. In the case of hardened mortar, the compressive strength showed a decrease due to the highly determined W/B inversely according to the increase in the flow through the entire age in which the compressive strength increased proportionally according to the increase in the B/W. Also, the increasing rate of such compressive strength increased more largely due to the latent hydraulic property of the BS according to the passage of the age. The flexural strength at the age of 28 days according to the increase in the B/W represented a similar level in strength values without any increases. The flexural strength for the compressive strength was distributed as a range of 1/2 ~ 1/3 and that showed a higher range than that of conventional concretes.

  • PDF

ESTIMATION OF CONCRETE STRENGTH AND QUANTIFICATION OF CONCRETE DETERIORATION BY X-RAY TECHNIQUE WITH CONTRAST MEDIUM (X선조영촬영에 의한 콘크리트강도의 추정과 콘크리트열화의 수치화)

  • Takeda, Mitsuhiro;Otsuka, Koji;Lee, Sang-Hun
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.41-44
    • /
    • 2008
  • The purposes of this study are to estimate thestrength of concrete and quantify the deterioration of concrete by a unique X-ray technique with a contrast medium. In order to estimate the strength of concrete, specimens with different water-cement ratios were fabricated using non-air-entrained concrete, air-entrained concrete and mortar to determine the relationship between their compressive strength and the transit dose obtained by the X-ray technique. Also, an experiment to quantify deterioration was carried out on specimens that were subjected to freezing and thawing action to different levels of dynamic elastic modulus. As a result of this experiment, estimation of the strength and relative dynamic elastic modulus of deteriorated mortar, concrete and air-entrained concrete was found feasible by measuring the transit dose by the X-ray technique.

  • PDF

A Study on the Activation Energy of Maturity Function for Prediction of Concrete Strength (콘크리트 강도예측을 위한 적산온도 함수의 활성화에너지에 관한 연구)

  • 장종호;강용식;김용로;길배수;남재현;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.81-84
    • /
    • 2002
  • Activation energy value is different according to cement, admixture and water-cement ratio also the relation of age-temperature is as non-linear as activation energy value is large. So to make accurate explanation for the effect of temperature on concrete strength development property, it is necessary to investigation for activation energy value. This study compares activation energy value recommended by Freiesleben and ASTM with activation energy value obtained by consequence of mortar examination according to ASTM C 1074-93. As the result of this study, activation energy value obtained by the study is 37.19KJ/mol, and in case of activation energy value obtained by the study explain temperature's influence about concrete strength development more accurate than activation energy value recommend by Freiesleben and ASTM.

  • PDF

Properties of Alkali-Activated Cement Mortar by Curing Method (양생 방법에 따른 알칼리활성 시멘트 모르타르의 특성)

  • Kim, Ji-Hoon;Lee, Jae-Kyu;Hyung, Won-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.117-124
    • /
    • 2014
  • Globally, there are environmental problems due to greenhouse gas emissions. $CO_2$ emissions rate of the cement industry is very high, but the continued demand of cement is needed in the future. In this study, in order to reduce the environmental impact of $CO_2$ emissions from cement production. The experiments were carried out for the development of non-sintered cement (have not undergone firing burning) by granulated ground blast furnace slag. In order to compare the characteristics by curing, an experiment was conducted by changing the curing conditions such as atmospheric steam curing, observe the mechanical properties for the measurement of flexural compressive strength by mortar, observe the chemical properties such as acid resistance, $Cl^-$ penetrate resistance and analyzed the mechanism of hydration by XRD, SEM experiments. From the experimental results, as compared with portland cement usually confirm the mechanical and chemical properties excellent, it is expected be possible to apply to the undersea, underwater and underground structures that require superior durability. In addition, based on the excellent compressive strength by steam curing, it is expected to be possible to utilize as a cement replacement material in the secondary product of concrete. In the future, to solve the problem through continued research, it will be expected to reduce the effect of environmental load and to be excellent economics.