• Title/Summary/Keyword: Non white noise

Search Result 107, Processing Time 0.02 seconds

Speech Enhancement Based on Improved Minima Controlled Recursive Averaging Incorporating GSAP (전역 음성 부재 확률 기반의 향상된 최소값 제어 재귀평균기법을 이용한 음성 향상 기법)

  • Song, Ji-Hyun;Bang, Dong-Hyeouck;Lee, Sang-Min
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.1
    • /
    • pp.104-111
    • /
    • 2012
  • In this paper, we propose a novel method to improve the performance of the improved minima controlled recursive averaging (IMCRA). From an examination for various noise environment, it is shown that the IMCRA has a fundamental drawback for the noise power estimate at the offset region of continuity speech signals. Espectially, it is difficult to obtain the robust estimates of the noise power in non-stationary noisy environments that is rapidly changed the spectral characteristics such as babble noise. To overcome the drawback, we apply the global speech absence probability (GSAP) conditioned on both a priori SNR and a posteriori SNR to the speech detection algorithm of IMCRA. With the performance criteria of the ITU-T P.862 perceptual evaluation of speech quality (PESQ) and a composite measure test, we show that the proposed algorithm yields better results compared to the conventional IMCRA-based scheme under various noise environments. In particular, in the case of babble 5 dB, the proposed method produced a remarkable improvement compared to the IMCRA ( PESQ = 0.026, composite measure = 0.029 ).

The Assessment on the Sound Quality of Reduced Frequency Selectivity of Hearing Impaired People (난청인의 주파수 선택도 둔화현상이 음질에 미치는 영향 평가)

  • An, Hong-Sub;Park, Gyu-Seok;Jeon, Yu-Yong;Song, Young-Rok;Lee, Sang-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1196-1203
    • /
    • 2011
  • The reduced frequency selectivity is a typical phenomenon of sensorineural hearing loss. In this paper, we compared two modeling methods for reduced frequency selectivity of hearing impaired people. The two models of reduced frequency selectivity were made using LPC(linear prediction coding) algorithm and bandwidth control algorithm based on ERB(equivalent rectangular bandwidth) of auditory filter, respectively. To compare the effectiveness of two models, we compared the result of PESQ (perceptual evaluation of speech quality) and LLR(log likelihood ratio) using 36 Korean words of two syllables. To verify the effect on noise condition, we mixed white and babble noise with 0dB and -3dB SNR to speech words. As the result, it is confirmed that the PESQ score of bandwidth control algorithm is higher than the score of LPC algorithm, on the other hands, and the LLR score of LPC algorithm is lower than the score of bandwidth control algorithm. It means that both non-linearity and widen auditory filter characteristics caused by reduced frequency selectivity could be more reflected in bandwidth control algorithm than in LPC algorithm.

Adaptive Clustering based Sparse Representation for Image Denoising (적응 군집화 기반 희소 부호화에 의한 영상 잡음 제거)

  • Kim, Seehyun
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.910-916
    • /
    • 2019
  • Non-local similarity of natural images is one of highly exploited features in various applications dealing with images. Unique edges, texture, and pattern of the images are frequently repeated over the entire image. Once the similar image blocks are classified into a cluster, representative features of the image blocks can be extracted from the cluster. The bigger the size of the cluster is the better the additive white noise can be separated. Denoising is one of major research topics in the image processing field suppressing the additive noise. In this paper, a denoising algorithm is proposed which first clusters the noisy image blocks based on similarity, extracts the feature of the cluster, and finally recovers the original image. Performance experiments with several images under various noise strengths show that the proposed algorithm recovers the details of the image such as edges, texture, and patterns while outperforming the previous methods in terms of PSNR in removing the additive Gaussian noise.

Virtual Monochromatic Image Quality from Dual-Layer Dual-Energy Computed Tomography for Detecting Brain Tumors

  • Shota Tanoue;Takeshi Nakaura;Yasunori Nagayama;Hiroyuki Uetani;Osamu Ikeda;Yasuyuki Yamashita
    • Korean Journal of Radiology
    • /
    • v.22 no.6
    • /
    • pp.951-958
    • /
    • 2021
  • Objective: To evaluate the usefulness of virtual monochromatic images (VMIs) obtained using dual-layer dual-energy CT (DL-DECT) for evaluating brain tumors. Materials and Methods: This retrospective study included 32 patients with brain tumors who had undergone non-contrast head CT using DL-DECT. Among them, 15 had glioblastoma (GBM), 7 had malignant lymphoma, 5 had high-grade glioma other than GBM, 3 had low-grade glioma, and 2 had metastatic tumors. Conventional polychromatic images and VMIs (40-200 keV at 10 keV intervals) were generated. We compared CT attenuation, image noise, contrast, and contrast-to-noise ratio (CNR) between tumor and white matter (WM) or grey matter (GM) between VMIs showing the highest CNR (optimized VMI) and conventional CT images using the paired t test. Two radiologists subjectively assessed the contrast, margin, noise, artifact, and diagnostic confidence of optimized VMIs and conventional images on a 4-point scale. Results: The image noise of VMIs at all energy levels tested was significantly lower than that of conventional CT images (p < 0.05). The 40-keV VMIs yielded the best CNR. Furthermore, both contrast and CNR between the tumor and WM were significantly higher in the 40 keV images than in the conventional CT images (p < 0.001); however, the contrast and CNR between tumor and GM were not significantly different (p = 0.47 and p = 0.31, respectively). The subjective scores assigned to contrast, margin, and diagnostic confidence were significantly higher for 40 keV images than for conventional CT images (p < 0.01). Conclusion: In head CT for patients with brain tumors, compared with conventional CT images, 40 keV VMIs from DL-DECT yielded superior tumor contrast and diagnostic confidence, especially for brain tumors located in the WM.

Performance Analysis of 32-QAPM System with MRC Diversity in Rician Fading Channel

  • Chun, Jae Young;Kim, Eon Gon
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.4
    • /
    • pp.227-232
    • /
    • 2016
  • In this study, the performance of a 32-quadrature amplitude position modulation (QAPM) system is analyzed under a Rician fading channel condition when the maximal ratio combining (MRC) diversity technique is used in the receiver. The fading channel is modeled as a frequency non-selective slow Rician fading channel corrupted by additive white Gaussian noise (AWGN). QAPM is available to improve BER performance without amplifying transmit power, and MRC diversity makes the performance improvement of QAPM system even bigger by intentionally maximizing SNR. Error performances are shown for the 32-QAPM system and a 32-phase silence shift keying (PSSK) system in order to examine the effects of fading severity, for various values of the Rician parameter, K. The dependence of error rates on MRC diversity is also analyzed. The simulation results show that the BER performance of the 32-QAPM system is better than that of the 32-PSSK system under the above mentioned conditions.

A Good Puncturing Scheme for Rate Compatible Low-Density Parity-Check Codes

  • Choi, Sung-Hoon;Yoon, Sung-Roh;Sung, Won-Jin;Kwon, Hong-Kyu;Heo, Jun
    • Journal of Communications and Networks
    • /
    • v.11 no.5
    • /
    • pp.455-463
    • /
    • 2009
  • We consider the challenges of finding good puncturing patterns for rate-compatible low-density parity-check code (LDPC) codes over additive white Gaussian noise (AWGN) channels. Puncturing is a scheme to obtain a series of higher rate codes from a lower rate mother code. It is widely used in channel coding but it causes performance is lost compared to non-punctured LDPC codes at the same rate. Previous work, considered the role of survived check nodes in puncturing patterns. Limitations, such as single survived check node assumption and simulation-based verification, were examined. This paper analyzes the performance according to the role of multiple survived check nodes and multiple dead check nodes. Based on these analyses, we propose new algorithm to find a good puncturing pattern for LDPC codes over AWGN channels.

A Characteristics of Non-linear Rolling of Ships in a Narrow Band Sea (협대역 스펙트럼을 가지는 해상에서의 선박 횡요의 특성)

  • Sun-Hong Kwon;Yun-Cheol Na;Dong-Dae Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.37-42
    • /
    • 1993
  • In this study of statistical characteristics of roll response of ships to narrow band exciting moment generated by passing white noise through a linear filter is investigated. The parameters of linear filler are determined by comparing the results of exciting moment generated through filler equation tilth those evaluated from JONSWAP spectrum. The statistical results of the roll response of shops are presented.

  • PDF

Adaptive Filtering for QRS Detection (QRS검출을 위한 Adaptive Filter)

  • Lee, Soon-Hyouk;Jun, Young-Il;Choi, Kyoung-Hoon;Yoon, Hyung-Ro
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1993 no.11
    • /
    • pp.167-170
    • /
    • 1993
  • matched filter는 신호와 잡음의 통계적 값을 알고 있을 때 신호대 잡음비를 최대로 하는 filter이다. 그런데, matched filter가 최적화 되려면 잡음이 white noise이어야한다. 그러나 ECG신호에 존재하는 잡음은 여러가지 성분이 공존하는 서로 연관되어있는 잡음이다. 따라서 whitening filter를 사용하여 잡음을 whitening시킨후에 matched filter를 통과 시켜야한다. 본 논문에서는 QRS complex를 검출하기 위한 matched filter에 있어서 LMS방법을 이용한 linear whitening filter와 neural network을 이용한 non-linear whitening filter의 특성을 비교하였다.

  • PDF

Energy-Efficient Scheduling with Individual Packet Delay Constraints and Non-Ideal Circuit Power

  • Yinghao, Jin;Jie, Xu;Ling, Qiu
    • Journal of Communications and Networks
    • /
    • v.16 no.1
    • /
    • pp.36-44
    • /
    • 2014
  • Exploiting the energy-delay tradeoff for energy saving is critical for developing green wireless communication systems. In this paper, we investigate the delay-constrained energy-efficient packet transmission. We aim to minimize the energy consumption of multiple randomly arrived packets in an additive white Gaussian noise channel subject to individual packet delay constraints, by taking into account the practical on-off circuit power consumption at the transmitter. First, we consider the offline case, by assuming that the full packet arrival information is known a priori at the transmitter, and formulate the energy minimization problem as a non-convex optimization problem. By exploiting the specific problem structure, we propose an efficient scheduling algorithm to obtain the globally optimal solution. It is shown that the optimal solution consists of two types of scheduling intervals, namely "selected-off" and "always-on" intervals, which correspond to bits-per-joule energy efficiency maximization and "lazy scheduling" rate allocation, respectively. Next, we consider the practical online case where only causal packet arrival information is available. Inspired by the optimal offline solution, we propose a new online scheme. It is shown by simulations that the proposed online scheme has a comparable performance with the optimal offline one and outperforms the design without considering on-off circuit power as well as the other heuristically designed online schemes.

Vibration control of offshore wind turbine using RSM and PSO-optimized Stockbridge damper under the earthquakes

  • Islam, Mohammad S.;Do, Jeongyun;Kim, Dookie
    • Smart Structures and Systems
    • /
    • v.21 no.2
    • /
    • pp.207-223
    • /
    • 2018
  • In this inquisition, a passive damper namely Stockbridge Damper (SBD) has been introduced to the field of vibration control of Offshore Wind Turbine (OWT) to reduce the earthquake excitations. The dynamic responses of the structure have been analyzed for three recorded earthquakes and the responses have been assessed. To find an optimum SBD, the parameters of damper have been optimized using Response Surface Methodology (RSM) based on Box-Behnken Design (BBD) and Particle Swarm Optimization (PSO). The influence of the design variables of SBD such as the diameter of messenger cable, the length of messenger cable and logarithmic decrement of the damping has been investigated through response variables such as maximum displacement, RMS displacement and frequency amplitude of structure under an artificially generated white noise. After that, the structure with optimized and non-optimized damper has been analyzed with under the same earthquakes. Moreover, the comparative results show that the structure with optimized damper is 11.78%, 18.71%, 11.6% and 7.77%, 7.01%, 10.23% more effective than the structure with non-optimized damper with respect to the displacement and frequency response under the earthquakes. The results show that the SBD can obviously affect the characteristics of the vibration of the OWT and RSM based on BBD and PSO approach can provide an optimum damper.