• 제목/요약/키워드: Non linear load

검색결과 641건 처리시간 0.026초

3상 4선식에시 비선형 부하의 운전시 유도전동기의 특성 해석 (Characteristics Analysis of Induction Motor by Operation of Non-linear Loads under the 3-Phase 4-Wire Grid System)

  • 김종겸;박영진;이은웅
    • 조명전기설비학회논문지
    • /
    • 제20권8호
    • /
    • pp.54-62
    • /
    • 2006
  • 3상 4선식 전원공급 시스템에서 단상 및 3상 부하의 운전하에서 전압 불평형은 부하의 불평형 운전에 의해 발생되고, 전류 불평형은 떨어진 전압 품질에 의해 더욱 심해진다. 에너지 변환장치로 사용되는 여러 형태의 컨버터는 3상 4선식 배전시스템에 직접적으로 고조파 전류를 주입함으로서 고조파 왜란을 증가시킨다. 고조파 전류는 전동기 출력 토크를 감소시키고, 전동기를 과열 또는 소음을 증가시키며 회전자에 토크 맥동을 증가하여 기계적인 공진과 진동을 발생하는 등 여러 가지 부작용을 낳고 있다. 따라서 본 논문은 3상 4선식 배전시스템에서 선형 및 비선형 부하의 혼합 운전시 불평형과 고조파 성분에 의해 유도전동기의 특성 변화에 대한 연구로서 선형 단독운전, 비선형 부하 결합에 따른 특성 변화를 해석한 것으로서 단상 비선형 부하의 추가 운전시 5 고조파 필터로도 저감이 어려운 고조파로 인해 토크 맥동 횟수는 줄고 리플값은 증가함을 확인할 수 있었다.

Three-Phase Reference Current Generator Employing with Kalman Filter for Shunt Active Power Filter

  • Hasim, Ahmad Shukri Abu;Ibrahim, Zulkifilie;Talib, Md. Hairul Nizam;Dardin, Syed Mohd. Fairuz Syed Mohd.
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.151-160
    • /
    • 2017
  • This paper presents a new technique of reference current generator based on Kalman filter (KF) estimator for three-phase shunt active power filter (APF). The stationary reference frame (d-q algorithm) is used to transform the load currents into DC component. The harmonics of load currents are extracted and the three-phase reference currents are generated using KF estimator. The work is simulated using Matlab/Simulink platform. To validate the simulation results, an experimental test-rig have been perform using real-time control dSPACE DS1104. In addition, hysteresis current control was used to generate the switching signal for the correction of the harmonics in the system. The non-linear load were constructed with three-phase rectifier which connected in series with inductor and parallel with resistor and capacitor. The results shows that the new technique of shunt APF embedded with KF is proven to eliminate the harmonics created by the non-linear load with some improvement on the total harmonics distortion (THD).

Strength of FRP RC sections after long-term loading

  • Pisani, M.A.
    • Structural Engineering and Mechanics
    • /
    • 제15권3호
    • /
    • pp.345-365
    • /
    • 2003
  • The adoption of fibre reinforced polymer (FRP) rebars (whose behaviour is elastic-brittle) in reinforced concrete (RC) cross sections requires the assessment of the influence of time-dependent behaviour of concrete on the load-carrying capacity of these sections. This paper presents a method of computing the load-carrying capacity of sections that are at first submitted to a constant long-term service load and then overloaded up to ultimate load. The method solves first a non-linear visco-elastic problem, and then a non-linear instantaneous analysis up to ultimate load that takes into account the self-equilibrated stress distribution previously computed. This method is then adopted to perform a parametric analysis that shows that creep and shrinkage of concrete increase the load-carrying capacity of the cross section reinforced with FRP and allows for the suggestion of simple design rules.

면진장치 장착 스카이 브릿지의 사용성 평가 (Serviceability Evaluation of Sky Bridge With Isolation Device)

  • 김기철;김현수;김수근
    • 한국공간구조학회논문집
    • /
    • 제17권2호
    • /
    • pp.71-77
    • /
    • 2017
  • In this study, the boundary non-linear analysis of the sky bridge subjected to walking load and running load is performed. The sky bridge is installed in the mid-story between two buildings and the walking load and running load induced by pedestrians are measured by load cell. LRB is modeled as a non-linear hysteresis model to accurately represent the behavior of LRB. For the serviceability evaluation of sky bridge, the acceleration responses of sky bridge are analyzed based on ISO 2631-2 and the velocity response are analyzed based on standards Bachmann &Amann. In serviceability evaluation of this sky bridge, the pedestrian can not perceive the vibration except for resonance running loads consequently. Therefore, it is concluded that this sky bridge haven't problem in the serviceability.

고고도 장기체공무인기 주익 Spar 비선형 구조 해석 (Non-linear Structural Analysis of Main Wing Spar of High Altitude Long Endurance UAV)

  • 박상욱;신정우;이무형;김태욱
    • 한국항공운항학회지
    • /
    • 제23권1호
    • /
    • pp.24-29
    • /
    • 2015
  • In order to increase endurance flight efficiency of long endurance electric powered UAV, main wing of UAV should have high aspect ratio and low structural weight. Since a spar which consists of thin and slender structure for weight reduction can cause catastrophic failure during the flight, it is important to develop verification method of structural integrity of the spar with the light weight design. In this paper, process of structural analysis using non-linear finite element method was introduced for the verification of structural integrity of the spar. The static strength test of the spar was conducted to identify structural characteristic under the static load. Then, the experimental result of the spar was compared to the analytical result from the non-linear finite element analysis. It was found that the developed process of structural analysis could predict well the non-linear structural behavior of the spar under ultimate load.

비선형 부하의 증감에 따른 고조파 특성 분석 (Analysis on the Harmonics Characteristics due to increase & decrease of Nonlinear load)

  • 김종겸;이운웅;김일중;김성헌
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.87-91
    • /
    • 2003
  • Most of the loads in industrial power distribution systems are balanced and connected to three wires power systems. However, in the user power distribution systems, most of the loads are single & three phase and unbalanced, generating a large amount of non-characteristic harmonics. With the advent of power electronics and proliferation of non-linear loads in industrial power applications, power harmonics and their effects on power quality are a topic of concern. Harmonics by the unbalance voltage and non-linear loads, cause the increase of machine loss and heating. In order to allow current harmonic compensation, a filter must be installed. This paper describes the performance of passive filter under the voltage unbalance and non-linear load.

  • PDF

불평형 전압 공급시 비선형 부하의 고조파 특성 해석 (Analysis on the Harmonic Characteristics of Nonlinear Load operated by Unbalance Voltage)

  • 김종겸;이은웅;이동주;이화수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.696-698
    • /
    • 2003
  • Most of the loads in industrial power distribution systems are balanced and connected to three wires power systems. However, in the user power distribution systems, most of the loads are single & three phase and unbalanced, generating a large amount of non-characteristic harmonics. With the advent of power electronics and proliferation of non-linear loads in industrial power applications, power harmonics and their effects on power quality are a topic of concern. Harmonics by the unbalance voltage and non-linear loads, cause the increase of machine loss and heating. In order to allow current harmonic compensation, a filter must be installed. This paper describes the performance of passive filter under the voltage unbalance and non-linear load.

  • PDF

A Comprehensive Harmonic Rejection for DFIG Feeding Non-Linear Loads in Stand-Alone Applications

  • Nguyen, Ngoc-Tung;Lee, Hong-Hee
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2012년도 전력전자학술대회 논문집
    • /
    • pp.258-259
    • /
    • 2012
  • This paper proposes a new control strategy to eliminate the harmonic components of stator current for stand-alone DFIG system feeding non-linear loads. In this method, the LSC operates as an active filter which is controlled by employing a proportional-integral and a resonant controller. And also, the stator current is used as the feedback signal for the compensator instead of the load current, so that the additional current sensor at the load side can be removed. The experiment is verified to validate the effectiveness of the proposed compensating method.

  • PDF

편심환내의 비선형 회전 유동 (Nonlinear Rotating Flows in Eccentric Cylinders)

  • 심우건
    • 대한기계학회논문집A
    • /
    • 제24권1호
    • /
    • pp.16-28
    • /
    • 2000
  • The steady rotating flows in eccentric annulus has been studied by a numerical method based on the spectral collocation method. The inner cylinder has a constant angular velocity while the outer on e is stationary. Flow between eccentric cylinders is of considerable technical importance as it occurs in journal bearings. In the present work, the governing equations for laminar flow are expressed as Navier-Stokes equations, including the non-linear convection terms. The solutions were utilized i, estimate the effects of the nonlinear terms on the load acting on the rotating cylinder. Based on the half and the full Sommerfeld methods, the load on the rotating cylinder is evaluated with eccentricity, by integrating the pressure and skin friction around the cylinder. The attitude angle and Sommerfeld reciprocal are calculated from the load. Also, the torque on the rotating inner cylinder was calculated. considering the skin friction. The attitude angle and Sommerfeld reciprocal are decreased with eccentricity. Viscous damping coefficient due to the skin friction becomes larger with decreasing the annular space. It is found the non-linear effects of the convection terms on the flow and the load are important. especially on the attitude angle, for relatively wide annular configurations however, the effects on those are minor for very narrow annular ones.

Post-buckling analysis of piles by perturbation method

  • Zhao, M.H.;He, W.;Li, Q.S.
    • Structural Engineering and Mechanics
    • /
    • 제35권2호
    • /
    • pp.191-203
    • /
    • 2010
  • To investigate the critical buckling load and post-buckling behavior of an axially loaded pile entirely embedded in soil, the non-linear large deflection differential equation for a pinned pile, based on the Winkler-model and the discretionary distribution function of the foundation coefficient along pile shaft, was established by energy method. Assuming that the deflection function was a power series of some perturbation parameter according to the boundary condition and load in the pile, the non-linear large deflection differential equation was transformed to a series of linear differential equations by using perturbation approach. By taking the perturbation parameter at middle deflection, the higher-order asymptotic solution of load-deflection was then found. Effect of ratios of soil depth to pile length, and ratios of pile stiffness to soil stiffness on the critical buckling load and performance of piles (entirely embedded and partially embedded) after flexural buckling were analyzed. Results show that the buckling load capacity increases as the ratios of pile stiffness to soil stiffness increasing. The pile performance will be more stable when ratios of soil depth to pile length, and soil stiffness to pile stiffness decrease.