• Title/Summary/Keyword: Noise robustness

Search Result 565, Processing Time 0.029 seconds

A Detection Method of Hexagonal Edges in Corneal Endothelial Cell Images (각막 내피 세포 영상내 육각형 에지 검출법)

  • Kim, Eung-Kyeu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.4
    • /
    • pp.180-186
    • /
    • 2012
  • In this paper, a method of edge detection from low contrast and noisy images which contain hexagonal shape is proposed. This method is based on the combination of laplacian gaussian filter and an idea of filters which are dependent on the shape. First, an algorithm which has six masks as its extractors to detect the hexagonal edges especially in the comers is used. Here, two tricom filters are used to detect the tricom joints of hexagons and other four masks are used to enhance the line segments of hexagonal edges. As a natural image, a corneal endothelial cell image which usually has a regular hexagonal shape is selected. The edge detection of hexagonal shapes in this corneal endothelial cell is important for clinical diagnosis. Next, The proposal algorithm and other conventional methods are applied to noisy hexagonal images to evaluate each efficiency. As a result, this proposal algorithm shows a robustness against noises and better detection ability in the aspects of the signal to noise ratio, the edge coineidence ratio and the detection accuracy factor as compared with other conventional methods.

Rethinking of the Uncertainty: A Fault-Tolerant Target-Tracking Strategy Based on Unreliable Sensing in Wireless Sensor Networks

  • Xie, Yi;Tang, Guoming;Wang, Daifei;Xiao, Weidong;Tang, Daquan;Tang, Jiuyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.6
    • /
    • pp.1496-1521
    • /
    • 2012
  • Uncertainty is ubiquitous in target tracking wireless sensor networks due to environmental noise, randomness of target mobility and other factors. Sensing results are always unreliable. This paper considers unreliability as it occurs in wireless sensor networks and its impact on target-tracking accuracy. Firstly, we map intersection pairwise sensors' uncertain boundaries, which divides the monitor area into faces. Each face has a unique signature vector. For each target localization, a sampling vector is built after multiple grouping samplings determine whether the RSS (Received Signal Strength) for a pairwise nodes' is ordinal or flipped. A Fault-Tolerant Target-Tracking (FTTT) strategy is proposed, which transforms the tracking problem into a vector matching process that increases the tracking flexibility and accuracy while reducing the influence of in-the-filed factors. In addition, a heuristic matching algorithm is introduced to reduce the computational complexity. The fault tolerance of FTTT is also discussed. An extension of FTTT is then proposed by quantifying the pairwise uncertainty to further enhance robustness. Results show FTTT is more flexible, more robust and more accurate than parallel approaches.

Copy-move Forgery Detection Robust to Various Transformation and Degradation Attacks

  • Deng, Jiehang;Yang, Jixiang;Weng, Shaowei;Gu, Guosheng;Li, Zheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4467-4486
    • /
    • 2018
  • Trying to deal with the problem of low robustness of Copy-Move Forgery Detection (CMFD) under various transformation and degradation attacks, a novel CMFD method is proposed in this paper. The main advantages of proposed work include: (1) Discrete Analytical Fourier-Mellin Transform (DAFMT) and Locality Sensitive Hashing (LSH) are combined to extract the block features and detect the potential copy-move pairs; (2) The Euclidian distance is incorporated in the pixel variance to filter out the false potential copy-move pairs in the post-verification step. In addition to extracting the effective features of an image block, the DAMFT has the properties of rotation and scale invariance. Unlike the traditional lexicographic sorting method, LSH is robust to the degradations of Gaussian noise and JEPG compression. Because most of the false copy-move pairs locate closely to each other in the spatial domain or are in the homogeneous regions, the Euclidian distance and pixel variance are employed in the post-verification step. After evaluating the proposed method by the precision-recall-$F_1$ model quantitatively based on the Image Manipulation Dataset (IMD) and Copy-Move Hard Dataset (CMHD), our method outperforms Emam et al.'s and Li et al.'s works in the recall and $F_1$ aspects.

A Lane-Departure Identification Based on Linear Regression and Symmetry of Lane-Related Parameters (차선관련 파라미터의 대칭성과 선형회귀에 기반한 차선이탈 인식)

  • Yi Un-Kun;Lee Joon-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.5
    • /
    • pp.435-444
    • /
    • 2005
  • This paper presents a lane-departure identification (LDI) algorithm for a traveling vehicle on a structured road. The algorithm makes up for the weak points of the former method based on EDF[1] by introducing a Lane Boundary Pixel Extractor (LBPE), the well known Hough transform, and liner regression. As a filter to extract pixels expected to be on lane boundaries, the LBPE plays an important role in enhancing the robustness of LDI. Utilizing the pixels from the LBPE the Hough transform provides the lane-related parameters composed of orientation and distance, which are used in the LDI. The proposed LDI is based on the fact the lane-related parameters of left and right lane boundaries are symmetrical as for as the optical axis of a camera mounted on a vehicle is coincident with the center of lane; as the axis deviates from the center of lane, the symmetrical property is correspondingly lessened. In addition, the LDI exploits a linear regression of the lane-related parameters of a series of successive images. It plays the key role of determining the trend of a vehicle's traveling direction and minimizing the noise effect. Except for the two lane-related parameters, the proposed algorithm does not use other information such as lane width, a curvature, time to lane crossing, and of feet between the center of a lane and the optical axis of a camera. The system performed successfully under various degrees of illumination and on various road types.

Light-weight Signal Processing Method for Detection of Moving Object based on Magnetometer Applications (이동 물체 탐지를 위한 자기센서 응용 신호처리 기법)

  • Kim, Ki-Taae;Kwak, Chul-Hyun;Hong, Sang-Gi;Park, Sang-Jun;Kim, Keon-Wook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.6
    • /
    • pp.153-162
    • /
    • 2009
  • This paper suggests the novel light-weight signal processing algorithm for wireless sensor network applications which needs low computing complexity and power consumption. Exponential average method (EA) is utilized by real time, to process the magnetometer signal which is analyzed to understand the own physical characteristic in time domain. EA provides the robustness about noise, magnetic drift by temperature and interference, furthermore, causes low memory consumption and computing complexity for embedded processor. Hence, optimal parameter of proposal algorithm is extracted by statistical analysis. Using general and precision magnetometer, detection probability over 90% is obtained which restricted by 5% false alarm rate in simulation and using own developed magnetometer H/W, detection probability over 60~70% is obtained under 1~5% false alarm rate in simulation and experiment.

Improved switching method for sensorless BLDC motor drive (Sensorless BLDC 전동기 구동을 위한 개선된 스위칭 방법)

  • Lee, Ho-Hyoung;Cho, Whang;Lee, Key-Seo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.2
    • /
    • pp.164-170
    • /
    • 2010
  • In brushless DC motor, current flow should be controlled such that only properly selected 2 out of 3 phases carry current depending on the position of rotor. In order to detect position of rotor, hole sensor, encoder, optical position-detecting sensor, and magnetic position-detecting sensor are frequently employed. These sensors not only often cause malfunction in low and high temperature but they also have disadvantage of increasing cost and size of an motor system. To reduce the cost and size and to increase the robustness of the motor system, recently researches on sensorless motor dirve are very active. This paper proposes a novel unipolar PWM switching method that can improve the control problem caused by the difficulty of detecting zero crossing point at high revolution speed by minimizing the switching noise while increasing the lifespan of the drive system.

Performance Improvement of Double-talk Detector Using Normalized Error Signal Power (정규화된 오차신호 전력을 이용한 동시통화 검출기의 성능 개선)

  • Heo, Won-Chul;Bae, Keun-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5C
    • /
    • pp.478-486
    • /
    • 2007
  • Double-talk detection errors can result in either large residual echo or distorting the near-end talker's input speech. Thus accurate double-talk detection is an important problem in the acoustic echo canceller to improve the speech quality. In the double-talk detection algorithm using a cross-correlation coefficient, double-talk detection errors can occur in the initial convergence period of an adaptive filter or in noisy environment since the cross-correlation coefficient becomes large in such situations. In this paper, we propose a new double-talk detection algorithm based on the cross-correlation method using a normalized error signal power to reduce the double-talk detection errors. The experimental results have shown the performance improvement of an acoustic echo canceller as well as the noise-robustness of the proposed double-talk detector.

Performance evaluation of diversity reception of underwater acoustic code division multiple access using lake experiment (저수지 실험을 통한 수중 음향 코드 분할 다중 접속 방식의 다이버시티 수신 성능 검증)

  • Seo, Bo-Min;Cho, Ho-Shin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.1
    • /
    • pp.39-48
    • /
    • 2017
  • CDMA (Code Division Multiple Access) is promising medium access control schemes for underwater acoustic sensor networks because of its robustness against frequency-selective fading and high frequency-reuse efficiency. In this paper, we design diversity schemes of underwater CDMA transceiver for the forward and reverse links. User data are multiplexed by Walsh code and a pseudo random noise code acquisition process is added for phase error correction before decoding the user data at the receiver. Then, the diversity reception using equal gain combining and maximal ratio combining is performed in order to minimize performance degradation caused by rich multipath fading of underwater acoustic channel. We evaluated the performance of diversity transceiver through lake experiment, which was performed at Lake Kyungcheon, Mungyeong city using two transmitters and two receivers placed 460 m apart at an average depth of 40 m. The lake experiment results show that user data are recovered with error-free in both of the forward and reverse links.

KR-WordRank : An Unsupervised Korean Word Extraction Method Based on WordRank (KR-WordRank : WordRank를 개선한 비지도학습 기반 한국어 단어 추출 방법)

  • Kim, Hyun-Joong;Cho, Sungzoon;Kang, Pilsung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.1
    • /
    • pp.18-33
    • /
    • 2014
  • A Word is the smallest unit for text analysis, and the premise behind most text-mining algorithms is that the words in given documents can be perfectly recognized. However, the newly coined words, spelling and spacing errors, and domain adaptation problems make it difficult to recognize words correctly. To make matters worse, obtaining a sufficient amount of training data that can be used in any situation is not only unrealistic but also inefficient. Therefore, an automatical word extraction method which does not require a training process is desperately needed. WordRank, the most widely used unsupervised word extraction algorithm for Chinese and Japanese, shows a poor word extraction performance in Korean due to different language structures. In this paper, we first discuss why WordRank has a poor performance in Korean, and propose a customized WordRank algorithm for Korean, named KR-WordRank, by considering its linguistic characteristics and by improving the robustness to noise in text documents. Experiment results show that the performance of KR-WordRank is significantly better than that of the original WordRank in Korean. In addition, it is found that not only can our proposed algorithm extract proper words but also identify candidate keywords for an effective document summarization.

A Study on the Methods for the Robust Job Stress Management for Nuclear Power Plant Workers using Response Surface Data Mining (반응표면 데이터마이닝 기법을 이용한 원전 종사자의 강건 직무 스트레스 관리 방법에 관한 연구)

  • Lee, Yonghee;Jang, Tong Il;Lee, Yong Hee
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.1
    • /
    • pp.158-163
    • /
    • 2013
  • While job stress evaluations are reported in the recent surveys upon the nuclear power plants(NPPs), any significant advance in the types of questionnaires is not currently found. There are limitations to their usefulness as analytic tools for the management of safety resources in NPPs. Data mining(DM) has emerged as one of the key features for data computing and analysis to conduct a survey analysis. There are still limitations to its capability such as dimensionality associated with many survey questions and quality of information. Even though some survey methods may have significant advantages, often these methods do not provide enough evidence of causal relationships and the statistical inferences among a large number of input factors and responses. In order to address these limitations on the data computing and analysis capabilities, we propose an advanced procedure of survey analysis incorporating the DM method into a statistical analysis. The DM method can reduce dimensionality of risk factors, but DM method may not discuss the robustness of solutions, either by considering data preprocesses for outliers and missing values, or by considering uncontrollable noise factors. We propose three steps to address these limitations. The first step shows data mining with response surface method(RSM), to deal with specific situations by creating a new method called response surface data mining(RSDM). The second step follows the RSDM with detailed statistical relationships between the risk factors and the response of interest, and shows the demonstration the proposed RSDM can effectively find significant physical, psycho-social, and environmental risk factors by reducing the dimensionality with the process providing detailed statistical inferences. The final step suggest a robust stress management system which effectively manage job stress of the workers in NPPs as a part of a safety resource management using the surrogate variable concept.