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Abstract 
 

Uncertainty is ubiquitous in target tracking wireless sensor networks due to environmental 

noise, randomness of target mobility and other factors. Sensing results are always unreliable. 

This paper considers unreliability as it occurs in wireless sensor networks and its impact on 

target-tracking accuracy. Firstly, we map intersection pairwise sensors’ uncertain boundaries, 

which divides the monitor area into faces. Each face has a unique signature vector. For each 

target localization, a sampling vector is built after multiple grouping samplings determine 

whether the RSS (Received Signal Strength) for a pairwise nodes’ is ordinal or flipped. A 

Fault-Tolerant Target-Tracking (FTTT) strategy is proposed, which transforms the tracking 

problem into a vector matching process that increases the tracking flexibility and accuracy 

while reducing the influence of in-the-filed factors. In addition, a heuristic matching 

algorithm is introduced to reduce the computational complexity. The fault tolerance of FTTT 

is also discussed. An extension of FTTT is then proposed by quantifying the pairwise 

uncertainty to further enhance  robustness. Results show FTTT is more flexible, more robust 

and more accurate than  parallel approaches. 
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1. Introduction 

Mobile targets’ tracking is a typical application of wireless sensor networks (WSNs), 

which plays a very important role in many military and civilian areas. Wireless sensors are 

always deployed randomly or deliberately in some area to detect intrusive target, obtain its 

real-time location and track its moving trace. 

Although many excellent ideas have been proposed for target-tracking [1][2][3][4][5][6], 

most of existing works are based on the assumptions that the locations of sensor nodes are 

precise and the sensed data collected by sensor nodes is accurate. Actually, uncertainty, 

which worsens the tracking efficiency, is ubiquitous in sensor networks due to factors such 

as the impreciseness of positioning systems, environment noise and sensing irregularity. 

Hence, two main problems affected by the uncertainty are 1. for one-shot localization of the 

target, the error was serious, and 2. for continuous localizations (tracking mobile target), the 

returning results change back and forth instead of being smooth.  

Considering most of existing tracking methods suffer from the ubiquitous uncertainty due 

to environmental noise and randomness of target mobility, several tracking strategies are 

designed to be tolerant of the uncertainty by calibrating the sensing result [7] or filtrating the 

low ranging-quality sensors [8] to improve the tracking efficiency. However, these tracking 

methods under uncertainty either lack flexibility in implementation, or lose sight of the fact 

that uncertain information can also promote the tracking efficiency. Consequently, this paper 

aims to propose a tracking strategy which can not only be tolerant of the uncertainty but also 

obtain and utilize it as additional helpful information of target tracking. 

 [9] and [10] have proclaimed unreliable sensing problem as well as the existence of 

pairwise sensors' uncertain area. Inspired by these previous works, the hypothesis and 

starting point of this paper are given. It is found out that the real distance between targets and 

sensor nodes has a bias with the generated distance from path-loss model. The real distance 

is independent of the position of the nodes/target as well as the received power. Hence for 

pairwise nodes, a uncertain area exists, in which the target signal’s measurements of two 

nodes cannot be compared.  

In this paper, a Fault-Tolerant Target-Tracking (FTTT) strategy is introduced which  

focuses on tracking mobile targets by utilizing the uncertain areas result from unreliable 

sensing. When the target is located in the uncertain areas of node pairs, the sampling 

reliability of each sensor and the comparison of their sensing results will be absolutely 

affected by the in-the-field factors, i.e., the comparison of Received Signal Strength (RSS) of 

pairwise nodes may be flipped, as shown in Fig. 1. What's more, a group of sampling is 

formed by multiple samplings during a localization, by analyzing which, a sampling vector 

can be generated to reflected the target’s spatial information reliably. Besides, the monitored 

area can also be divided into several faces marked with a specific signature vector by the 

uncertain areas’ boundaries,. Each face is considered to be a optional location of the target. 

Hence, by matching the two vectors to track the target, the uncertainty turns to be helpful 

information of target tracking instead of causation of great error.  Additionally, the storage 

and time complexity is controlled effectively by designing a heuristic matching algorithm 

based neighbor face links. The fault tolerance is discussed to prevent impact on conducting 

of sampling vectors due to the loss of one-shot sensing. Elaborate performance evaluation 

and extensive simulation experiments show that our flexible FTTT can promote the tracking 

accuracy significantly with limited system cost. 

We summarize the contributions made in this study as follows: 
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 To the best of our knowledge, this appears to be the first study that improves the 

efficiency of target tracking by using the unreliability or uncertainty of sensors’ 

relative sensing relationship. 

 A Fault-Tolerant Target-Tracking (FTTT) strategy is brought up. By conducting the 

sampling vector and the signature vector with uncertainty, the tracking process is 

turned into a vector matching problem, which makes FTTT flexible and robust. 

 In order to consummate our tracking strategy, a series of methods, such as maximum 

likelihood matching model, heuristic matching algorithm and strategy fault tolerance, 

are proposed. These methods are used to increase the tracking accuracy, reduce the 

complexity and prompt the robustness. Thereafter, FTTT is extended by quantifying 

the pairwise uncertainty to conduct sampling vectors. 

 Theoretical analysis is conducted to determine the grouping sampling times, while 

the worst-case tracking error is analyzed as well.  

 Extensive simulations and an outdoor experimental system are given to validate the 

correctness and efficiency of FTTT strategy. 
The rest of the paper is organized as follows: Section 2 reviews related works firstly. Then 

pairwise uncertainty problem is described and the uncertain boundaries are analyzed in 

Section 3. Section 4 introduced the Fault-Tolerant Target-Tracking strategy (FTTT) in detail 

and Section 5 presents its performance by analyzing the proper sampling times and the 

overall tracking error. Section 6 extends FTTT by quantifying the pairwise uncertainty. In 

Section7 the results of simulations and outdoor experiments are discussed. Finally, Section 8 

concludes the paper. 

2. Related Work 

As range-based tracking methods [11][12][13] have to measure the distance between the 

target and the sensors or the angle of received signal, additional hardware is always needed 

[12], or requiring careful environment profiling [11][13]. Therefore, this kind of methods 

seem hard to be implemented. Another kind of prevalent tracking strategy is model-based, 

which is achieved by successively estimating the localization [2], velocity [4][5] and 

trace[14] of the target with target movement modeling, estimation[15] and filtering [16][17] 

(e.g., Kalman filter [18], Particle filters [19], Bayesian networks [20], Variational filter [21]). 

Most of the model-based methods use time-correlated measurements for localization, i.e., 

sensors may use the measurements of previous target positions to infer current target location. 

However, these methods are complex and inflexible which requires detailed assumptions of 

target mobility.  

Recently, more flexible tracking schema was proposed by region division and sequence 

matching [22][23][24], in which divided faces/patches are regarded as the candidate 

locations of target tracking and reflect the relative distance relationship of sensors. These 

range-free and model-free tracking methods are based on pairwise relative distance, and turn 

tracking process into sequences matching problem without target mobility and accurate 

range-based localization, which seem to be generic, flexible, and compatible. However, 

these methods have their own problems as well. MSP and Sequence-based methods [23][24] 

address only stationary sensor node/target localization. Path-based MLE [22] requires 

assuming the maximum velocity of the target which is unfavorable in real system. Besides, 

these methods are not robust enough. Because they do not take consideration of the probable 

error from one-shot unreliable sensing, thus the detection sequence which reflects the 

relative distance from the target to the sensors is unconfident. 

In order to deal with the uncertainty problem that most of existing tracking methods suffer 
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from, CDL [7] use neighborhood hop-count sequence matching to implement local filtration 

to guarantee the high localizing ranging-quality. P𝑘NN [8] propose a series of general 

models and provide an efficient tracking algorithm based on probabilistic 𝑘-nearest 

neighbors retrieval under uncertainty. Actually, these methods do not make full use of the 

unconfident and unreliable detection result, which can also provide useful information for 

improving tracking accuracy.  

Since our tracking strategy is based on relative distance from the target to sensors and 

takes full consideration of the pairwise uncertainty, the strategy is proved to be robust and 

accurate in the unreliable sensing environment without increasing the overhead of system 

ultimately. Besides, compared to the constraint (such as the mobility or the maximum 

velocity of the target) of other methods, extra imposed conditions are not needed in our work. 

3. The Uncertainty Problem Description 

In this section, focusing on a given node pair, we first illustrate the existence of the uncertain 

area, where it is hard to determine which sensor node is nearer to the target by the RSS. Then 

the boundary of the uncertain area is analyzed. 

3.1 Assumption of the Uncertain Area 

In the real environment, the sensing results are ultimately unreliable, i.e., high tracking 

accuracy can only be achieved by best effort since the target’s signal cannot be 100 percent 

accurate due to network delay, discrete sampling instances, sensing resolution and 

environment noise. Experiments are given to compare the RSS between the two nodes, 

1 2( , )node node , and generate a detection sequence of the two RSS by descending sorting. As 

shown in Fig. 1, when the target is located near the perpendicular bisector of two sensor 

nodes, and is actually closer to one of them, the returning node sequences may flip at 

different time instants.  
 

 

Fig. 1. Returning Node Sequence may Flip at Different Time Instant 

Definition 1 (Uncertain Area): For any pair of nodes 1n : 1 1( , )x y   and 2n : 2 2( , )x y , there 

exists some area where it is hard to distinguish which sensor is closer to the target. The area 

is defined as uncertain area. 

As a result, for each sampling time instant, the relative ordinal relationship of sensing 

intensity may not be obtained correctly. Then serious tracking error occurs in the methods 

that strictly rely on the certain detection node sequences [22][23][24] due to biased results. 
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3.2 Analysis of the Boundary of Uncertain Areas 

A logarithmic attenuation noise model for signal-strength based detection was  proposed in 

[25][26]. Hence, the received signal can be obtained by: 
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We see that C  is a constant for a given sensing resolution, and we derive that if two nodes 

cannot be compared with each other at time k , the upper bound of the distance between the 

target and the two nodes obeys formula(3). This means the trajectory equation of these points 

outlines the boundaries of the uncertain area.  
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Fig. 2. Uncertain Boundaries of Node Pairs 

As shown in Fig. 2., supposing two nodes is 2d  away from each other with the coordinate 
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( ,0)d  and ( ,0)d , and considering points ( , )x y  on the uncertain boundaries obey the 

equation (3), we have 
2 2 2

2 2

2 2 2

1 4( )
1 ( 1)

C C dx d y
C C

  
 

     (4) 

This gives us a circle trajectory equation and the uncertain boundary can be defined 

accordingly. 
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Fig. 3.The Division of Area by Perpendicular Bisectors and Uncertain Boundaries of Node 

Pairs 

Definition 2 (Uncertain Boundary): The trajectory of the two axisymmetric circles 

(Circles of Apollonius [27])is defined as the uncertain boundary of node pairs, whose axis is 

the perpendicular bisector of the two nodes, as shown in Fig. 2. 

In [22] (tracking with certain node sequences), considering four sensors deployed as grid, 

the field should be divided into eight faces by the intersections of the perpendicular bisectors 

of each two nodes. This assumes all returned RSS had no error, as shown in Fig. 3(a). 

However, according to the analysis of sensing unreliability and the definition of uncertain 

area mentioned above, when m
kd  varies from 0 to  , uncertain boundaries are two 

axisymmetric circles, as shown in Fig. 3(b). The area of the grid is divided into several faces 

by the intersections of pairwise uncertain boundaries of the four nodes. Thus, the eight faces 

with certain ordinal RSS of each node turn into tiny areas, as shown in Fig. 3(a) and Fig. 3(b), 

e.g. 1 1 2 2', 'f f f f  . Hence, the certain detection sequences seem hard to be obtained, 

which means the target  cannot be located into correct faces in majority of situations. 

Furthermore, when the distance between two nodes increases to some value, the faces in 

which we can get certain detection node sequences will no longer exist, as shown in Fig. 3(c). 

Therefore, the certain sequence matching strategy will cause great tracking error of target 

one-shot localization or continuous tracking in the real environment, while the drawbacks 

can be overcome by the method based on uncertain area. 

4. Fault-Tolerant Target-Tracking Strategy 

In this section, the Fault-Tolerant Target Tracking (FTTT) strategy will be detailed discussed. 

Firstly, an overview of FTTT is given. Then, four subsections that support the FTTT, the 

construction of sampling vector, the division of monitor area, the heuristic matching 
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algorithm and the strategy fault tolerance, will be introduced in turn. 

4.1 Strategy Overview 

The previous section shows that tracking by matching certain node sequences is full of holes 

due to the uncertain characteristic of the sensors’ sampling. The One-shot non-confident 

sampling cannot reflect the real relative distant relationship because of the contingency. As a 

result, great tracking error exists. However, as shown in Fig. 4, a straight-forward method 

can be built by utilizing the unreliable information. 
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Fig. 4. Overview of Fault-Tolerant Target-Tracking Strategy 

On the one hand, for each localization, each sensor samples multiple times in a very short 

time interval synchronously which forms a grouping sampling. For each pair of nodes, if the 

RSS order is flipped in different time instant, we assign value 0 to this pair. If the pairwise 

RSS order is ordinal all the time, 1 and -1 is assigned to it according to the order is ascending 

or descending. By enumerating all the pairs’ values, a sampling vector can be obtained. On 

the other hand, for pairwise nodes, the uncertain boundaries divide the monitor area into 

three parts. We assign 0 to the uncertain area, 1 to the area nearer to the smaller node ID 

sensor, and -1 to the remaining one. Uncertain boundaries of node pairs intersect with each 

other and divide the area into several faces, each face has a unique  signature vector by 

enumerating the assigned value according to the uncertain boundaries of each pair. 

Therefore, the target can be localized by matching the sampling vector with the signature 

vector of faces, and along the moving trace of the target, periodic grouping sensing results 

from related sensor nodes produce a series of sampling vector, which embed relative position 

relationships among the sensor nodes and mobile target, so we can track the target 

effectively. 

4.2 Construct Grouping Sampling Vectors 

Since different geographic distances between each sensor node and the target will lead to 

various sensing results at each sensor node, by sampling several times in a very short time 

interval, we can consider the target is relative stationary and a grouping sampling can be 

conducted.  
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Fig. 5. Example of Constructing Sampling Vector 

Definition 3 (Grouping Sampling): Supposing n  sensors have been deployed in the 

monitor area, and in a very short time interval t , each sensor samples almost 

synchronously at different time instant e.g. from 0t  to 1mt  . All the sampling results can be 

organized as a grouping sampling, which can be denoted by a matrix as: 

 

0 0 0 0

1 1 1 1

1 1 1 1

1, 2, 3, ,

1, 2, 3, ,

1, 2, 3, ,

...

...
... ... ... ... ...

...
m m m m

t t t n t

t t t n t

t t t n t

rss rss rss rss
rss rss rss rss

rss rss rss rss
   

 
 
 
    

 

At each time instant, the sampling RSS of each sensor, which is a row of the matrix, can 

form a detection sequence by given a descending ordering of elements. For any sensor 

node in , its sampling results at different time instant forms a set, irss , which is also a column 

of the matrix. For any pair of nodes ( 1n  and 2n ) and their corresponding RSS ( 1rss  is 

sampled by 1n  and 2rss  by 2n ), there are three situations: 1. if all elements in 1rss  is greater 

than those in 2rss , defined 1 2rss rss ; 2. if opposite, define 1 2rss rss ; 3. if not all the 

elements in 1rss  is greater(smaller) than those in 2rss , define 1 2rss rss . So their RSS 

relationship has three probable states according to the group of sampling, which can be 

formatted by two ordinal situations 1 2( , )n n , 2 1( , )n n  and one flipped situation 1 2{ , }n n . 

Definition 4 (Node Pair Value): For any pair of nodes, in  and jn , i j , after comparing 

their sampling results (RSS), we derive the node pair value, denoted by ,i jn nV . 

, , { 1,0,1}
i ji j n nV   . If 1 2rss rss , the value of this pair is 1; if 1 2rss rss , the value of this 

pair is -1; if 1 2rss rss , the value is 0. 

For the given deployed sensor nodes, all the values of  node pairs can form a vector which 

can represent the information of each grouping samplings. 

Definition 5 (Sampling Vector): Supposing there are n  sensors deployed in the monitor 

field, there are 2
nN C  pairs totally. By enumerating all the pairs in ascending order will get 

a sequence, formally, 1 2 1 3 1 2 3 2 4 2 1( , ),( , ),...,( , ),( , ),( , ),...,( , ),......,( , )n n n nn n n n n n n n n n n n n n , we 

obtain the node pair values successively and a sampling vector dV  which is given by 

1 2[ , ,..., ]NdV v v v d , { 1,0,1}, 1,2,...,iv i N   . 
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Algorithm 1 

 
 1Algorithm   Constructing Sampling Vector

input:     Sampling results of sensors at different time instant, Sampling times 

output:   Sampling Vector d

k

V

1, 2, ,

1:

2 : [ , ,..., ];

3: ( );

4 : [ ] ;

5 : 1;

6 : ;

7 : 0;
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c c ct t n t
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
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  while  do

      

      Descending

      

        

  end while
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9 :
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
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

  for    do

      for    do

         for    do

              if  then

                  if  then

                      

4 : ;                      break

15:

16 : [ ] 1;

17 : ;

18 : [ ][ ] [ ][ ]

19 : [ ] 1

20 :

d

d

V count

Matrix i k Matrix j k

V count







                  else

                      

                  end if

              else if  then

                  if  then

           [ ] 0;

21: ;

22 :

23: [ ] 1;

24 : ;

25 : ;

26 : ;

27 :

d

d

V count

V count



 

           

                      break

                  else

                      

                  end if

              end if

         end for

        1;

28 : ;

29 : ;

count count  

     end for

 end for

 
We summarize four steps to obtain the sampling vectors of each grouping sampling:  

1. Aggregate all the sensors’ sampling results at different time instant within the sampling 

unit (time interval t ). Then the grouping sampling matrix is generated;  

2. Descend each row of the grouping sampling matrix. Then for each sampling time 

instant, detection node sequences which reflects the RSS ordering can be found out;  

3. Compare and classify each node pair through all the detection node sequences and 

analyze which pairs have been flipped and which are ordinal all the time;  

4. Get the value of each node pair according to 3), and enumerate them all in ascending 

order to form the sampling vectors.  

The algorithm constructing a sampling vector of n  sensors from a grouping sampling is 

shown as Algorithm 1. 

For example, as shown in Fig. 5, four sensors sampled almost synchronously at different 

time instant e.g. from 0t  to 1t  in a very short time interval t . The six sampling results at 

different time instant of four sensor nodes belong to a grouping sampling and form the 

grouping sampling matrix. After giving the descending order of the sampling results of each 

time instant (each row of the matrix), it is easy to find that only one pair (3,4)  flipped in this 

group results, and other pairs are ordinal as (2,1),(1,3),(1,4),(2,3),(2,4)  out of the 2
4 6C   

pairs. Therefore, the sampling vector [ 1,1,1,1,1,0]  is constructed. 

The returned vector dV  is the sampling vector of this grouping sampling. Line 1 to 6 of  

Algorithm 1 is performed to get grouping samplings matrix and descend each row, and line 

8 to 29 is to build the sampling vector. It is easy to get the storage complexity of this 

algorithm, which is 2( ( 1) / 2) ( )O n k n n O n    .While the time complexity of this 

algorithm should be 2( )O n k . Since k  is a quite limited constant (which will be detailed 

discussed in Section 5), the complexity is ought to be 2( )O n . 

4.3 Construct the Signature Vector of Divided Faces 

In order to localize and track the target, the monitor area is divided into several faces by the 
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uncertain boundary of node pairs and each face is ready to be a candidate location of the 

target, as shown in Fig. 7(a).  

1) Area Dividing and Signature Vector Generating: For a given node pair, any point in the 

monitor area has three states: nearer to one node of the pair, nearer to the other, or in the 

uncertain area of this pair. This means that each location point in the area has unique  node 

pair values of all the node pairs. Hence after combining all the node pair values of some 

location point, its signature vector can be get, which is used to describe the spatial 

information of the location point. 

Definition 6 (Signature Vector): For n  sensors deployed in the monitor field, there are 
2
nN C  pairs totally. By enumerating all the pairs in ascending order, we will get a sequence, 

formally, 1 2 1 3 1 2 3 2 4 2 1( , ),( , ),...,( , ),( , ),( , ),...,( , ),......,( , )n n n nn n n n n n n n n n n n n n . Focusing on 

any point p  in the monitor area, for each given pair ( , ),i jn n i j , we assign a value to 

denote the three situations: p  is nearer to in , the value is 1; p  is nearer to jn , the value is -1; 

p  is in the uncertain area of this pair, the value is 0. Then we obtain the value of each node 

pair successively and a signature vector sV of the point p  is given by 1 2[ , ,..., ]NsV v v v d , 

{ 1,0,1}, 1,2,...,iv i N   . 

Lemma 1 (Uniqueness): All the points in the same face have the same signature vector 

and all the points that have the same signature vector belong to the same face. Formally, 

1 2, 1 2 1 2( ) ( ) ,p p s sV p V p p p f    , where 1 2,p p is two elements of the node pair set and f  

is a specific face. 

This lemma can be proofed by contradiction easily, which indicated us that each face of 

the area should correspond to an ordinal pair set as well as a flipped pair set. Then each face 

can also be mapped to a specific signature vector.  

According to our analysis, every group of sampling will return a sampling vector which 

represents the spatial information of the target, while every face divided by the uncertain 

boundaries has a unique signature vector. Then the location of the target can be determined 

by matching the two vectors, as shown in Fig. 7(b). 

2) Approximate Grid Division: The dividing of the area and computing of the signature 

vector of each face should be completed in the preprocess phase before starting the tracking 

the target, and information is real-time aggregated and stored in the base stations or in the 

cluster heads. The network model, topology, energy management and data synchronization 

of the target tracking sensor networks can be easily achieved according to [28].  

Although real-time capability and precision of localization are very important to target 

tracking, the division of area involves very complex geometry problem, as shown in Fig. 

6(a). Therefore, an approximate division and centroid obtaining method are needed, which 

can divide the area easily and quickly, besides, the location error can be controlled 

dynamically and kept under a certain degree. 

The area can be divided into a number of square grids, and the coordinates as well as the 

signature vector of each grid can be easily got. Make the center of the grid on the bottom left 

the origin, horizontal direction the X  axis and vertical direction the Y  axis, and define the 

center coordinate of each grid as its coordinate, as shown in Fig. 6(b). Then scan all the grids 

in the tracking area and classify the grids which have the same signature vector. Supposing 

m  grids in the approximate area has the same signature vector with face f , and their 

coordinates are respectively 1 1 2 2( , ),( , ),...,( , )m mx y x y x y , as shown in Fig. 6(c). Then, as 

shown in Fig. 6(d)  the approximate location or the centroid of the approximate of face f  

can be expressed as: 
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1 1

1 1( , ) ( , )
m m

G G i i
i i

x y x y
m m 

            (5) 
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Fig.6. Example of Approximate Grid Division 

An adaptive grid division algorithm in our previous work [29] can be used to simplify the 

face division pre-process of FTTT. However, the detailed discussion is beyond the capability 

of this paper. 

4.4 Strategy Design in Detail 

In ideal case, a sampling vector dV  should be identical with one and only one of the face’s 

signature vector sV . However, in a real system, sensing at each sensor node could be 

irregular and affected by many factors. For n  deployed sensor nodes there are only 4( )O n  

divided faces (candidate locations). It is obvious that the number of different sampling 

vectors is much greater than the number of divided faces. Hence, sometimes there may not 

exist a face whose signature vector is equal to the sampling vector. For the no face matching 

situation, a maximum likelihood matching method is proposed to guarantee the target can be 

determined into a specific face. 

1) Maximum Likelihood Matching: To be simple, we adopt Euclidean Distance to evaluate 

the similarity of two vectors. 

Definition 7 (Similarity of two different vectors): For two given different vectors, 1V and 

2V  ( 1 2V V ), their similarity 
1 2,V V

S is define as 
1 2

1 2,
1/

V V
S V V  . 
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We can easily prove the reasonableness of the supposing similarity by the definition of 

sampling vectors and signature vectors. If one signature vector of a face has the maximum 

similarity to the sampling vector, it also means that the expecting location of the target is 

most likely in this face. Hence, the corresponding face of a sampling vector can be 

determined by selecting the face which has the maximum similarity with the sampling 

vector. 
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Fig. 7. Example of Divided Faces and Tracking Process 

As shown in Fig. 5, the sampling vector [ 1,1,1,1,1,0]dV   , and as shown in Fig. 7 (a),the 

signature of 3f  is also [ 1,1,1,1,1,0] . Hence, the target is localized in face 3f . However, if 

the sampling vector is appears to be [ 1,1,1,1,1,1]dV   , there is no faces whose signature 

vector directly matches it. Therefore, the maximum likelihood matching method is requested 

to help localize the target. Computing the similarity between the sampling vector and the 

signature vector of each face, we can find out that the similarity between the sampling vector 

dV  and the signature vector of 3f  is 
3, ( )

1
d sV V f

S  , which is the maximum similarity. Hence, 

the target should be localized in face 3f  accordingly. 

2) Heuristic Matching Algorithm 

The target tracking problem is turned into a vector matching process. There are 4( )O n  

divided faces totally if n  sensor nodes can sense the target. Each divided face is stored as a 

record with face ID and its signature vector. Hence, the storage complexity is 4( )O n . Besides, 

matching a sampling vector with signature vectors will traversing all the candidate faces, 

which means the time complexity of the ergodic matching process is 4( )O n . However, we 

find that the divided faces are not isolated but have inherent correlations, thus neighbor face 

links can be built to describe the correlation. Firstly, we give the definition of neighbor face. 

Definition 8 (Neighbor face links): For any given face f , if an adjacent face 'f  has one 

common edge with f , 'f  is a neighbor face of f . Edges which link neighbor faces are 

defined as neighbor face links. As shown in Fig. 8(a), 1f , 4f  and 5f  are neighbor faces of 

2f . The blue segments are the neighbor face links. 

Theorem 1 (Relation between neighbor faces): Suppose f  and 'f  are neighbor faces, 

the signature vector of f  is ( )sV f  and the signature vector of 'f  is ( ')sV f , ( )sV f  and 

( ')sV f  satisfies that ( ) ( ') 1s sV f V f  .  

Proof: For f  and 'f  which are neighbor faces, they must have one common edge. For 

two points p  and 'p  whose signature vector is denoted by ( )sV p  and ( ')sV p , and they 
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belong to f  and 'f , respectively. Supposing p  is very close to 'p  and only divided by the 

common edge, it is obvious that the edge is on some uncertain boundary of one node pair. 

Then, there is one and only one different component of the signature vectors of p  and 'p , 

denoted by iv  and 'iv  , and ' 1i iv v  . As p  is very close to 'p , there is no other 

uncertain boundaries crossing the two points. Hence the signature vectors of the two points 

satisfies ( ) ( ') 1s sV f V f  . According to Lemma 1, this theorem is proved.              ■ 
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Fig.8. Example of Heuristic Matching with Neighbor Face Links 

All the neighbor face links form a set, denoted as {( , ') | ( ) ( ') 1}s sL f f V f V f   , which 

can describe the inherent correlations among divided faces very well. As shown in Fig. 8(b), 

with the information of the neighbor face links, the target tracking strategy has two 

advantages. 1. The matching of any localization is separated into several tracking rounds, 

and within every round the neighbor face whose signature vector has the maximum 

similarity with sampling vector indicates the matching “direction” to assure the matching is 

more efficient. Then the original ergodic matching process has been changed into matching 

along with a convergent searching path. 2. Consecutive tracking further reduces matching 

complexity. Considering the target tracking is a successive process, the face which is the 

previous target location is selected to be the next starting matching face. Referring to the 

previous localizing, each localization matching will end in very limited searching rounds. 
Algorithm 2 illustrates the target tracking process. The number of edges link the neighbor 

relations is equal to the number of segments formed by inspection of uncertain boundary, 

which is 4( )O n  as well. We see that the storage complexity including the face ID, signature 

records and the neighbor face links, is still 4( )O n , which means building the neighbor face 

links will not ultimately increase the storage complexity. However, if we apply the 

correlation among these chaotic divided faces and utilize heuristic matching method based 

on neighbor relationship, the time complexity of the target tracking strategy will drop from 
4( )O n  to 2( )O n . Taking the Algorithm 1 into account, the final storage complexity is 
4( )O n  and the time complexity is 2( )O n . 
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Algorithm 2 
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3) Strategy Fault Tolerance: In a real system, one-shot sensing at each sensor node could 

be irregular and affected by environment noise or obstacles, but the dimension of signature 

vectors is inherent and fixed, which only relies on the density of the sensor networks and the 

sensing range of sensors. Hence, the dimension of the sampling vectors may be less than the 

inherent dimension of signature vectors, because of the loss of some one-shot sensing results. 

Then the fault tolerance problem should be discussed. 

Actually, the dimension of the sampling vectors is relatively dynamic, which cannot 

guarantee obtaining all the nodes’ sampling results. For a group sampling, all the sensors are 

in the node set sN . However, for some reason such as breakdown of sensors or fault 

occurrence, some of the sensors do not return sensing results, which are in the node set rN , 

and sensors which return results are in the set rN . Obviously, r r sN N N  . 

Thus, one node pair value can only have three situations: 1. If both nodes are in the set rN , 

the node pair value can be got  by comparing the two sensing results; 2. If both nodes are in 

the set rN , We define ' '  to be the node pair value, because the sensors in rN  do not 

actually participate in tracking, so that we cannot determine the relative RSS relationship; 3. 

If only one of the sensors is in rN  and the other is in rN , the node pair value is determined 

by the principle that sensing results in rN  are always smaller than those in rN . Hence, each 

node pair value of sampling vector can be conducted accordingly. 

According to  4       and 

1                                                and 
   of  and  ( )

1                                             and 

i r j r

i r j r
i j

ri

definition n N n N

n N n N
node pair value n n i j

n N

 

 
 

 

                                               and 
j r

ri j r

n N

n N n N



 

  

       (6) 

As a result, even if the fault occurs, the sampling vector dV  can also be filled with the 

equal length to the signature vector of divided faces. Considering the factor of fault 

occurrence and the extended node pair value, we have to redefine the difference of vectors. 

Definition 8 (difference of two different vectors): For two given different 

dimensionalNd  vectors ( Nddenote the number of node pairs), 1 1,1 1,2 1,[ , ,..., ]NV v v v  and 

2 2,1 2,2 2,[ , ,..., ]V v v v N , ( 1 2V V ), their difference 1 2V V  is define as: 
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1 2 1,1 2,1 1,2 2,2 1, 2,[( ),( ),...,( )]V V v v v v v v    Nd Nd  

The difference of corresponding components of the two vectors obeys equation (7). 

 1, 2, 1, 2,
1, 2,

           and 

0                      
i i i i

i i

v v v v
v v

else

    
            (7) 

For instance, as shown in Fig. 5, four sensing results are expected to be returned. However, 

there are only results from 1n  and 3n  which satisfy 
1 3n nrss rss . 

As the discussion above, the sampling values of node pair 1 2( , )n n , 1 3( , )n n , 1 4( , )n n  and 

3 4( , )n n  is 1 . Analogously, the sampling value of 2 3( , )n n  is -1 and the sampling value of 

2 4( , )n n  is  . Hence, the sampling vector is conducted to be [1,1,1, 1, ,1]dV    . After 

finding the face whose signature vector has the maximum similarity with this sampling 
vector, the target should be located in the face 8f  (whose signature vector 

8( ) [1,1,1,0,0,0]sV f  ) with the similarity 
8, ( )

1/ 2
d sV V f

S  . 

5. Performance Discussion 

We can see that FTTT is based on the grouping sampling which means each sensor should 

sense several times in a very short time interval. A proper sampling times k  should be 

determined, which can guarantee high confidence of target’s spatial information. Another 

key metics we must concern about is the tracking error, which directly reflects the efficiency 

of a tracking strategy. We should analyze the parameters related to the tracking error as well. 

5.1 Determination of Grouping Sampling Times 

For any pair of nodes, 1n  and 2n , e.g., denoted as pair 1P , the probable order is twofold: one 

is sequential order (1,2)sO  , the other is reverse order (2,1)rO  . When the target located 

in the uncertain area of 1n  and 2n , the pair is ought to be flipped. However, the number of  

grouping sampling times is limited, so the grouping sampling may only contain sO  or rO , 

which means we cannot guarantee getting the expected flipped pair {1,2}. For k  continuous 

grouping samplings, when the target appears in the uncertain area, we suppose the 

probability that one time sampling result appear to be sequential or reverse order are both 

1/ 2 . Then the grouping sampling cannot obtain the information of expected flipped pair  

     1

1
1 1 1=
2 2 2

k k k

pf f


   . 

Hence, the probability that grouping sampling getting the expected flipped pair is  

 
1

1
11 1
2

k

f f


     

For N  excepted flipped pairs, 1 2, ,..., NP P P , it is obvious that 
1 2

...
Np p pf f f f    , the 

probability that a grouping sampling can get all the flipped information is 

0

( 1)
N

M M M
N N

M

f C f


          (8) 

After obtaining the general term of the recurrent sequence above (according to Appendix 

I), we can derive the probability that a grouping sampling can get all flipped information of 

N  node pairs as 1(1 )N
Nf f   , where  

1
1=
2

k

f


, k  is the sampling times. Suppose the 

probability is expected to be larger than  , formally,  
1

1

2
(1 )1

k
N

Nf 


   , we can get 
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 1
1

21 log (1 )Nk     ,where 
 1

1
2log (1 ) 0N   . 

Logarithmic dependence instructs that even if the probability is very high and the number 

of node pairs is very large, the request sampling times is limited. For instance, there are 20 

sensor nodes sensing the target simultaneously (very dense) and the expected probability is 

99% (very high), limited sampling times 16k   can satisfy the user's probability threshold. 

5.2 Analysis of Tracking Error 

We see that the tracking error contains two parts. One is caused by the distance between the 

located face of FTTT and the actual face that the target located in, which is called inter-face 

error. The other results come from the area of the faces, which is called intra-face error. As 

the number of the divided faces is 4( )O n , where n  is the number of the nodes that 

participate in tracking, the tracking error mainly comes from the former factor. According to 

analysis in Section 4, the vector distance between two faces is approximately proportion to 

their geographical distance, formally, 1 2 1 2( , ) ( ( ), ( ))s sGD f f VD V f V f . By reviewing the 

similarity between two vectors, it is obvious that the error between the located face and the 

actual face is corresponding to the similarity between the detecting vector and the signature 

vector. In order to simplify the analysis, the approximate vector distance is used to evaluate 

the inter-face error in the following part instead of geography distance. 

As we have discussed that for only a pair of nodes, 1P , detecting the target, the probability 
that a grouping sampling can obtain all the flipped pairs and generate the correct sampling 

vector is  
1

1
11 1
2

k

f f


    . Then we can obtain the error caused by localizing the target 

to the incorrect faces. 
Supposing the target appeared out of the uncertain area, the sampling vector is constant 

according to our assumption, and the inter-face error is 0. While the target is in the uncertain 

area, if we do not get the flipped pair from the sampling vector, the target may be localized 

into a wrong face which brings in error. For only one pair 1P  detecting the target, the 

probability has the property
1 1

1p pf f  , the expectation of the error E  of the localization 

due to locating the target to a wrong face is  1 1

1
11 0
2

k

p pE f f f


      . 

Supposing the target appeared in the intersection of the uncertain area of N  node pairs, 

formally, 1 2, ,..., NP P P d. Then, for any node pair iP , the returned information should be one of 

the above-mentioned two situations, iP  or iP . The sum of all the probabilities of possible 

sampling results is 1, formally 

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 1 1 2 3

( )
( ) ( ) 1

N N N N N

N N N NN

P P P P P P P P P P P P P P P P P P P P

P P P P P P P P P P P P P P P P P

f f f f f
f f f f



                   

                

    
      

     (9) 

Considering all the node pairs are coequal, we only need to concern about how many node 

pairs report incorrect information. In other words, we conclude that the probability of all the 

situations that there are M  node pairs reflecting incorrect information are equal, which is 

denoted by (1 )N MMf f  , besides, there are M
NC  different situations, which makes the 

value of the error to be M . Hence, the expectation of the error is: 

0

(1 )M M
N N

N
N M

M

fE M C f



     . 

The calculating process of the equation above can refer to Appendix II and the vector 

distance error is given by NE fN  . 
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Focusing on an area when the target appears in, there are totally n  nodes can sense the 

target and thus 2
nN C  node pairs. Then the area can be divided into K  faces by the 

uncertain boundaries of pairwise nodes pairs. We define iK  is the number of faces that is the 

inspection of the uncertain boundaries of i  node pairs. It is obvious that 
1

N

i
i

K K


 . 

The expectation of the inter-face error is presented as 
1

· i
i

i

N K

K
Ev E



 . Then considering 

iE fi   , the error is 
1 1

· · ·
N

i

N
i

i i

fK

K K
Ev i f i K

 

   . 

Hence, an inequality can be conducted to represent the error 

2 2

1 1

· · · ( )i
i

N N

i n
i

f f
Ev i K N N fK

K
C f O f n

K  

         

At any time instant the target can be sensed by 2n R    sensor nodes, where R  is the 

sensing range of sensors and  is the density of the sensor deployment. Consequently, there 

are 2
nC  node pairs. The 2R  area (in which the sensors can sense the target) can be divided 

into 4( )O n  faces. Considering the influence of intra-face error, in worst-case the final 

tracking error is 

2

( 1)/2

2 2
2

·

4 2 4

· ··

2·

1

( )

R

k

C f REv RE
n

O
RR

 


    


 
  

  
     (10) 

where   is a constant.  

Therefore, we find out that the tracking error is dependent on the deployment density, the 

sensing range of sensor nodes, and the sampling times. Increasing sampling times and 

deployment density will reduce the tracking error. However, too dense deployment will 

worsen the communication ability of the sensor networks as well as the delay. Anyhow, high 

tracking performance can be easily achieved by setting proper and undemanding sampling 

times. 

6. Strategy Extension 

As we discussed before, when there is not any face whose signature vector is equal to the 

vector, the maximum likelihood matching method is proposed. However, sometimes we may 

find out that there exists more than one face with the maximum likelihood. For example, if 

the sampling vector is [0,1,1,1,1, 1] , 
1 4, ( ) , ( )

1
d s d sV V f V V f

S S  . Hence, the face 1f  and 4f  both 

have the maximum similarity, as shown in Fig. 7. The target should be located to the location 

which is the mean value of all the candidate faces which have the maximum similarity.  

However, it is obvious that the sampling information is not sufficiently used. Supposing 

one grouping sampling which contains k  times continuous samplings, for a given pair of 

nodes 1n  and 2n , we can count the number of sample in which the RSS of 1n  is greater than 

2n , 
1 2( , )n nN , and the number of sample in which the RSS of 1n  is smaller than 2n , 

2 1( , )n nN . It 

is easy to see that the sampling times k  is equal to the sum of the two numbers, 

1 2 2 1( , ) ( , )n n n nk N N  . Then the probability of the ordinal pair appearing to be (1,2)  is given 

by 
1 2 1 2( , ) ( , ) /n n n nP N k , and similarly 

2 1 2 1( , ) ( , ) /n n n nP N k . 

The node pair value should also be extended with the extra information of the probability. 

We define the extended node pair value as the probabilities of the sequential order of this pair 

subtract the probability of reverse order of this pair. 

Definition 10 (Extended Node Pair Value): For any pair of nodes, in  and jn , i j  , 
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supposing the sampling times is m . After comparing the strength of their sampling results, 

we derive the Extended Node Pair Value ,'
i jn nV  by , , [ 1,1]

i ji j n nV    and 

, ( , ) ( , )i j i j j in n n n n nV P P  . 

In this way, the sampling vector of different grouping sampling results are different. 

Additionally, when we calculate the similarity between the sampling vector and the signature 

vector of some face, each component (the extended node pair value) of the sampling vector is 

no longer qualitative, {-1, 0, 1}, but quantitative (distributing in the interval [-1, 1]). It not 

only contains the information that whether this pair of nodes have flipped in the grouping 

sampling but shows the flipped extent that how much the sequential order is more (or less) 

than the reverse order. Then we mainly eliminate the problem that the maximum similarity 

between the sampling vector and the signature vectors is not unique. 

 

 

t0

t1

t2

t3

t4

t5

Detection Node Sequence of a 

Grouping Sampling 

(1,2,4,3)
(1,2,4,3)
(2,1,4,3)
(1,2,4,3)
(2,1,4,3)
(1,2,4,3)

[0, 1, 1, 1, 1, -1]

[0.33, 1, 1, 1, 1, -1]

Basic sampling vector

Extended sampling vector

 

Fig. 9. Comparion Between Basic Sampling Vector and Extended Sampling Vector 

For example, as shown in Fig. 9, this grouping sampling has six continuous samplings. 

For the node pair 1n  and 2n , there are four sequential orders, (1,2) , and two reverse orders, 

(2,1) . Hence, the basic sampling vector formed by basic node pair values is [0,1,1,1,1, 1] , 

while the extended sampling vector is turned into [0.33,1,1,1,1, 1] . 

 
Therefore, if the extended sampling vector is used, we will get the similarity:

1, ( )d sV V f
S =1.5 , 

2, ( )d sV V f
S = 

21/ (2 / 3) 1 0.832  , 
3, ( )d sV V f

S = 21/ (4 / 3) 1 0.6  , 
4, ( )d sV V f

S   21/ (1/ 3) 1  

0.949 , 
5, ( )d sV V f

S = 
21/ (2 / 3) 1 1 0.640     and 

6, ( )d sV V f
S  = 

21/ (4 / 3) 1 1   0.514 . 

 

As shown in the results, we find out that only face 1f has the maximum similarity 

(
1, ( )

1.5
d sV V f

S  ), so the target should be located in this face. After adopting the extended 

sampling vector, the similarities are various from each other, i.e., the similarities between 
any extended sampling vector and signature vectors of different faces are various. Hence, we 
can easily select the only face with the maximum similarity to determine the correct location 
of the target. 
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Fig. 10. Tracking by FTTT and PM under regularly and randomly sensor deployment. 

( k =5,  =1) 

Table 1. System Parameters and Settings 

Parameter Settings 

Filed Size 2100 100m  

Noise Model Parameter 4, 6X    

Number of Sensor Nodes ( n ) 5 ~ 40  

Sensing Range ( R ) 40m  

Sensing Resolution (  ) 0.5 ~ 3dBm  

Sampling Rate (  ) 10Hz  

Target Velocity 1 ~ 5 /m s  

Sampling Times 3 ~ 9times  

 

7. Performance Evaluation 

We conduct simulation experiments to compare the proposed Fault-Tolerant Target-Tracking 
(FTTT) strategy with Direct maximum likelihood estimation (Direct MLE) [24] tracking 
scheme and the optimal path matching strategy with MLE (PM) proposed in [22]. In the 
simulation, we divide the monitor area by grid division according to our previous work [29]. 
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A trace of the mobile target is generated by the random waypoint mobility model [30]. 
Tracking error at one point in the trace is the geographic distance between the estimated 
position and the true position. The mean tracking error is average of the errors of all the points 
in the trace. Each tracking simulation lasts 60s. Table 1 illustrates the detailed parameters 
settings. 
 

 

0

2

4

6

8

10

12

14

16

5 10 15 20 25 30 35 40

E
rr

o
r 

st
a

n
d

a
rd

 d
ev

ia
ti

o
n

  (
m

)

Number of sensor nodes

error standard deviation of PM
error standard deviation of direct MLE
error standard deviation of FTTT

0

5

10

15

20

25

5 10 15 20 25 30 35 40

T
ra

ck
in

g
 m

ea
n

 e
rr

o
r 

(m
)

Number of sensor nodes

tracking mean error of PM
tracking mean error of direct MLE
tracking mean error of FTTT

(b) (c)

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100 110

T
ra

ck
in

g
 e

rr
o

r 
(m

et
re

)

Target  tracking time (second)

tracking error of direct MLE
tracking error of PM
tracking error of FTTT

(a)

 
Fig. 11. (a) Dynamic Tracking Error Along Time Series ( k =5, =1 and n =10). (b) and 

(c) Tracking Mean Error and Standard Deviation Varies with the Number of Sensors 

( k =5,  = 1). 

7.1 Tracking Simulation 

This subsection gives an intuitive comparison between FTTT and PM strategy of a tracking 
example. Fig. 10(a) and Fig. 10(b) show all the position points estimated by PM and FTTT 
under the tracking example in which sensors are deployed in grid, respectively. Fig. 10(c) and 
Fig. 10(d) is the tracking results of PM and FTTT when the sensors are randomly deployed 
under uniform distribution. 

7.2 Performance Simulation 

Fig. 11(a) shows the dynamic tracking errors of FTTT, PM and Direct MLE along with time 
series, which further proves the conclusion that the tracking performance of FTTT is much 
greater than the other two. The following simulations illustrate the impact of tracking error. 

1) Tracking Performance Comparison with Different Number of Sensor Nodes: We 

compare the FTTT strategy with PM and Direct MLE methods under different number of 

random deployed sensor nodes, which varies from 5 to 40. Fig. 11(b) and Fig. 1 Fig. 11(c) 

show the mean tracking error and standard deviation of error, respectively. Simulation 
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depicts that 1. by increasing number of deployed sensor nodes, the tracking error and its 

standard deviation are both reduced, and when sensor nodes is less than 10, the reducing 

degree is great; 2. the FTTT strategy performs much better than PM and Direct MLE. 
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Fig. 12. (a) Impact of Sensing Resolution ( k =5); (b) Impact of Sampling Times ( =1); (c) 

and (d) Comparison of Mean Error and Standard Deviation between basic and extended FTTT 

( k =5,  =1). 

2) Impact of Sensing Resolution: Fig. 12(a) shows the mean tracking error of FTTT 

changes with the sensing resolution   when randomly deploying 10,15,20 and 25 sensor 

nodes. It shows that 1. under the same noise model parameter (   and X ), lower sensing 

resolution leads to higher tracking accuracy; 2. for a given sampling times ( k = 5), the less 

sensors deployed, the more quickly the tracking error is reduced along with the reduction of 

sensing resolution. Besides, when the number of sensor nodes is larger than 20 (when 

sampling times), the tracking errors have not yet been sensitive with the sensing resolution. 

3) Impact of Sampling Times: Fig. 12(b) shows the mean error of FTTT strategy when the 

number of sensor nodes varies from 10 to 40 under different sampling times k  = 3, 5, 7, 9. 

Results indicate 1. increasing the sampling times k  will reduce the tracking error;  2. when 

the number of sampling times is very limited, but the number of sensor nodes is great, the 

tracking error will be increased along with the number of sensors. This is because when there 

are many sensors participanting in tracking, the information of uncertain area cannot be 

obtained effectively under limited sampling times. 

4) Effectiveness of Strategy Extension: When the sensing resolution   = 1 and the 

sampling times k  =5, Fig. 12(c) compares the mean error of basic FTTT with the extended 
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FTTT and Fig. 12(d) compares their standard deviation of tracking errors. It is obvious that 

although the extended FTTT does not ultimately reduce the tracking error, it reduces the 

error deviation (when 10n  , the standard deviation of extended FTTT is 79% less than the 

basic FTTT), which makes returning trajectory much smoother and the tracking process 

more robust. This is ultimately consistent with our analysis in Section 6, and the quantifying 

the sampling vector’s uncertainty in extended FTTT improves the tracking efficiency. 

7.3 System Evaluation 

 

(b)

(a) (c)

(d)
 

Fig. 13. Outdoor System Evaluation 

FTTT is implemented by using the Crossbow IRIS (XM2110) motes with the MTS300 sensor 

boards outdoor, as shown in Fig. 13(a). 10 IRIS motes are used and 9 of them are deployed as 

a cross “ ” shape in the playground of our campus to be the sensor nodes for tracking. One 

person carries the remaining mote to simulate a mobile target. The target moves along a 

“ ” shape trace at changeable velocity in 1~5m/s, and its 4 kHz fixed frequency 

piezoelectric resonator continuously send signal. The deployed sensors receive the signal 

strength and send them to base station via MIB520 USB interface board. Fig. 13(b) shows the 

target trajectory is real-time generated alone with the target moving. Fig. 13(c) and Fig. 13(d) 

illustrate the tracking results of basic and extended FTTT, respectively. 
We can see from Fig. 13(c) and Fig. 13(d)  that both the basic and extended FTTT perform 

target tracking very well. For the basic FTTT, since the target velocity is optional instead of 

programmed and the noise always exists, the tracking error is in-and-out. However, even the 
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maximum tracking error is acceptable. For the extended FTTT, it makes the tracking 

trajectory much smoother than the basic FTTT, especially at the turning corner where the 

tracking error should be greater. From the outdoor real environment evaluation, we can find 

out that FTTT is robust and tracks the moving target accurately. FTTT not only overcomes 

uncertainty of the environment and the target, but makes full use of the uncertain information 

to improve the tracking efficiency. 

8. Conclusion 

To the best of our knowledge, this appear to be the first paper to use  unreliability to improve 

the efficiency of target tracking by including uncertain area boundaries of node pairs to 

demark monitor area into faces and use multiple times grouping samplings to obtain relative 

relationship of pairwise nodes’ RSS. The strategy proposed in this paper transforms the 

tracking problem into a vector matching process which improves tracking flexibility while 

reducing the influence of in-the-field factors and results in improved tracking accuracy and 

robustness Our evaluation of theoretical and experimental results demonstrates that this 

strategy outperforms other related methods. 

Appendix 

Appendix I: Proof of the Probability Equation 
If there are totally N  node pairs in the grouping sampling, We can know from the equation (8) 

that the probability that the grouping sampling can get all the flipped information in basic 

approximate target-tracking strategy is given by
0

( 1)
N

M M M
N N

M

f C f


    . We conduct the 

equation 
1 1

1 1 1
0 0 0

( 1) ( 1) ( 1)
N N N

M M M M M M M M M
N N N N N

M M M

f f f C f f C f C f
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  

                 . 

We can see that 1 1N N Nf f f f    , then 1(1 )N Nf f f    , where 0 1f  . Besides, it 

easy to get that 1 1f f  . Hence, we can get our probability equation (1 )N
Nf f  .         ■ 

Appendix II: Proof of the Localization Error Equation. 
Since when the target appear in the intersection of N  node pairs’ uncertain area, the 

expectation of the error is 

0
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According to equation (9), the sum of all probabilities is 1, i.e.,
1

1
1

0

(1 ) 1
N

N M
N

M

M MC f f


 




    . 

We obtain that 1NN fE E   .And according to above-mentioned 1E f , it is obvious 

that NE fN  .                     ■ 
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