A Detection Method of Hexagonal Edges in Corneal Endothelial Cell Images

각막 내피 세포 영상내 육각형 에지 검출법

  • 김응규 (한밭대학교 정보통신공학과)
  • Received : 2012.08.02
  • Accepted : 2012.11.03
  • Published : 2012.10.30

Abstract

In this paper, a method of edge detection from low contrast and noisy images which contain hexagonal shape is proposed. This method is based on the combination of laplacian gaussian filter and an idea of filters which are dependent on the shape. First, an algorithm which has six masks as its extractors to detect the hexagonal edges especially in the comers is used. Here, two tricom filters are used to detect the tricom joints of hexagons and other four masks are used to enhance the line segments of hexagonal edges. As a natural image, a corneal endothelial cell image which usually has a regular hexagonal shape is selected. The edge detection of hexagonal shapes in this corneal endothelial cell is important for clinical diagnosis. Next, The proposal algorithm and other conventional methods are applied to noisy hexagonal images to evaluate each efficiency. As a result, this proposal algorithm shows a robustness against noises and better detection ability in the aspects of the signal to noise ratio, the edge coineidence ratio and the detection accuracy factor as compared with other conventional methods.

본 연구에서는 육각형상을 포함하는 잡음이 많은 저 대비 영상으로부터 에지를 검출하는 방법을 제안한다. 이 방법은 라플라시안-가우시안 필터의 조합과 형상에 의존하는 필터의 아이디어에 기초하고 있다. 먼저, 모퉁이에서 특히 육각형의 에지를 검출하기 위한 검출기로서 6 개의 마스크를 갖는 알고리즘을 사용한다. 여기에서 두 개의 삼각화살 모양의 필터는 육각형의 삼각화살 모양의 접속부를 검출하기 위해 사용되고, 나머지 네 개의 마스크는 육각형 에지의 선성분을 강조하기 위해 사용된다. 자연영상으로서 보통 규칙적인 육각형상의 각막 내피 세포를 선택하며, 이 각막 내피 세포내 육각형상의 에지 검출은 임상 진단에 있어서 중요하다. 그 다음, 에지 검출법의 유효성을 평가하기 위해 제안 알고리즘과 기존 방법을 잡음을 포함하는 육각형 영상에 적용한 결과 본 제안 방법이 다른 방법에 비해 신호 대 잡음비와 에지의 일치율 및 검출 정확도에서 잡음에 대한 강인성과 양호한 검출 능력을 나타낸다.

Keywords

References

  1. LS. Davis, "A survey of Edge Detection Techniques", Computer Graphics and Image Processing, Vol.4, pp.248-270, 1975. https://doi.org/10.1016/0146-664X(75)90012-X
  2. D. Marr, E. Hidreth, "Theory of edge detection", Processing R., Society, Lond, Vol.B207, pp.187-217, 1980.
  3. N. Yamaguchi, N. Tamori, and A. Shiomi, "A Lane Detection Method Using Adaptive Edge Preservative Smoothing", The ICEC Trans. on Information Systems, Part 2, Vol.J88-D-II, No.8, pp.1421-1431, Aug. 2002.
  4. M. Basu, "Gaussian-based edge-detection method-a survey". IEEE Trans. System, Man and Cybernetics, Part C, Vol.32, Issue 3, pp.252-260, Aug. 2002. https://doi.org/10.1109/TSMCC.2002.804448
  5. B. Lipkin, A. Rosenfeld, Picture Processing and Psychopictorics, JMS Prewitt: Object Enhancement and Extraction, Academic Press, New York, 1970.
  6. K. Suzuki, I. Horiba and N. Sugie, "Neural edge enhance for supervised edge enhancement from noisy images", IEEE Trans. Pattern Analysis and Machine Intelligence, VoI.25, Issue 12, pp.1582-1596, Dec. 2003. https://doi.org/10.1109/TPAMI.2003.1251151
  7. F. Gasparini, S. Corchs, R. Schettini, "Adaptice Edge Enhancement using a Neurodynamical Model of Visual Attention", ICIP, pp.972-975, 2005.
  8. P. Shivakumara, W. Huang, and C. Tan, "An Efficient Edge based Technique for Text Detection in Video Frames", IEEE The Eighth International Association of Pattern Recognition(IAPR) International Workshop on Document Analysis Systems(DAS), 307-314, 2008.
  9. Eung-Kyeu Kim, "An Extraction Method of Glomerulus Region from Renal Tisssue Images", Journal of The Korean Institute of Signal Processing and Systems, Vol.13, No.2, 70-76, 2012.
  10. Sung Woong Shin, Jun Chul Kim, Kum Hui Oh, Yung Ran Lee, "Automatic Matching of Multi-Sensor Images Using Edge Detection Based on Thining Algorithm", Korean Journal of Geomatics, Vol.26, No.4, pp.407-414, 2008. am
  11. Jun-Sik Kwon, "Obtaining 1-pixel Width Line Using an Enhanced Parallel Thinning Algorithm", Journal of the Institute of Electronics Engineers of Korea, VoI.46, No.1, SP, pp.1-6, 2008.
  12. Yun-Hee Woo, Mi-Na Ha, Seung-Min Jung., "A Hardware Implementation of Fingerprint Identification Thinning Algorithm", Spring Conference Proceedings 2012 of The Korean Institute of Maritime lnformation and Communication Sciences, VoI.14, No.1, pp.493-496, 2010.
  13. S. E. Umbaugh, Computer Imaging Digital Image Analysis and Processing, A CRC Press Book, pp.328-355: pp.377-391, 2005.
  14. R. C. Gonzalez, R. E. Woods, S. L. Eddins, Digital Image Processing using MATLAB, PEASON Prentice Hall, Inc., pp.125-140, 2005.