• Title/Summary/Keyword: Noise Uncertainty

Search Result 275, Processing Time 0.034 seconds

Uncertainty in the Calibration of Coaxal Thermal Noise Sources using a Noise Figure Measuring Equipment

  • Kang, Tae-Weon;Kim, Jeong-Hwan;Park, Jeong-Il
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.2
    • /
    • pp.79-86
    • /
    • 2004
  • In this paper, the uncertainty in the calibration of coaxial thermal noise sources using a noise figure measuring (NFM) equipment is evaluated. Contributions to the uncertainty such as the calibration uncertainty of the standard noise source, mismatch, measurement of adapter efficiency, ambient temperature variation, and repeatability are evaluated in the frequency range of 10 MHz to 18 ㎓. Results show that the expanded uncertainty(k=2) is 0.23 ㏈ for the noise sources of 5 ㏈ and 15 ㏈ ENR, and 0.27 ㏈ for those of 21 ㏈.

Uncertainty evaluation in electrochemical noise resistance measurement (전기화학적 노이즈 저항 측정에서의 불확도 평가)

  • Kim, Jong Jip;Kang, Su Yeon
    • Corrosion Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.220-226
    • /
    • 2013
  • The uncertainty in statistical noise resistance measurement was evaluated for a type 316 stainless steel in NaCl solutions at room temperature. Sensitivity coefficients were determined for measurands or variables such as NaCl concentration, pH, solution temperature, surface roughness, inert gas flow rate and bias potential amplitude. The coefficients were larger for the variables such as NaCl concentration, pH, inert gas flow rate and solution temperature, and they were the major factors increasing the combined standard uncertainty of noise resistance. However, the contribution to the uncertainty in noise resistance measurement from the above variables was remarkably low compared to that from repeated measurements of noise resistance, and thus, it is difficult to lower the uncertainty in noise resistance measurement significantly by lowering the uncertainties related with NaCl concentration, pH, inert gas flow rate and solution temperature. In addition, the uncertainty in noise resistance measurement was high amounting to 17.3 % of the mean, indicating that the reliability in measurement of noise resistance is low.

Noise Evaluation Considering the Uncertainty Variation According to Frequency

  • Lee, Chulwon;Koo, SeungJun;Kong, Young Mo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.191-196
    • /
    • 2014
  • In the evaluation of measured noise data, tolerance shall be decided based on the uncertainty. The uncertainty has frequency variations due to the different standard deviations at each frequency. Therefore, tolerance shall be differently decided for each frequency with the same confidence probability. In the report, the evaluation method considering the frequency variation of uncertainty will be introduced. From the approach, considering the actual noise distribution characteristics of the ships, the tolerance shall be decided for each frequency with the same probability, but the overall averaged value shall be kept to the value designated in each notation.

  • PDF

Estimation of Uncertainty in Vibration Measurement of Shipboard Equipment (함정탑재장비 진동 측정불확도 추정)

  • Park, Sungho;Lee, KyungHyun;Han, HyungSuk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.7
    • /
    • pp.509-516
    • /
    • 2014
  • This paper proposes estimation model of uncertainty in vibration measurement of shipboard equipment and analyzes the result of uncertainty estimation. Vibration of shipboard equipments affects underwater radiated noise that is important performance related to stealth of the naval vessel. Acceptance testing for shipboard equipment is required to guarantee the stealth performance of naval vessel. In measuring, detailed uncertainty estimation is essential to improve measuring reliability. Acceptance testing result of structure-borne noise and vibration is used to analyze uncertainty in vibration measurement of shipboard equipment.

Numerical Analysis for Fluid-Structure Interaction in Aircraft Structure Considering Uncertainty (불확정성을 고려한 항공기 구조물의 유체-구조간 상호 간섭 현상의 수치 해석)

  • Chung, Chan-Hoon;Shin, Sang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.251-257
    • /
    • 2007
  • For the modern aircraft, uncertainty has bee an important issue to its aeroelastic stability. Therefore, many researches have been conducted regarding this topic. The uncertainties in the aeroelastic system amy consist of the structural and aerodynamic uncertainty. In this paper, we suggest a parametric uncertainty modeling and conduct the aeroelastic stability analysis of a typical wing including the uncertainty.

  • PDF

Measurement Uncertainty of Vibration Testing Result with Including Uncertainty of Testing Facilities (시험장비의 특성을 고려한 진동시험결과에 대한 측정불확도 추정)

  • Moon, Seok-Jun;Chung, Jung-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.781-786
    • /
    • 2016
  • All measurements are subject to uncertainty and a measurement result is complete only when it is accompanied by a statement of the associated uncertainty. By international agreement, this uncertainty has a probabilistic basis and reflects incomplete knowledge of the quantity value. The "Guide to the Expression of Uncertainty in Measurement", commonly known as the GUM, is the definitive document on this subject. The requirements for estimation of measurement uncertainty apply to all results provided by calibration laboratories and results produced by testing laboratories under the optional circumstances. In this paper, a procedure for estimation of measurement uncertainty from vibration testing is proposed on KS F 2868:2003 as an example. Both Type A and Type B evaluation of uncertainty are considered to calculate the combined standard uncertainty and expanded uncertainty.

A Suggestion of Fuzzy Estimation Technique for Uncertainty Estimation of Linear Time Invariant System Based on Kalman Filter

  • Kim, Jong Hwa;Ha, Yun Su;Lim, Jae Kwon;Seo, Soo Kyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.7
    • /
    • pp.919-926
    • /
    • 2012
  • In order to control a LTI(Linear Time Invariant) system subjected to system noise and measurement noise, first of all, it is necessary to estimate the state of system with reliability. Kalman filtering technique has been widely used to estimate the state of the stochastic LTI system with stationary noise characteristics because of its estimation ability versus algorithm simplicity. However, it often fails to estimate the state of the LTI system of which system parameter uncertainty exists partly and/or input uncertainty exists. In this paper, a new estimation technique based on Kalman filter is suggested for stochastic LTI system under parameter uncertainty and/or input uncertainty. A fuzzy estimation algorithm against uncertainties is introduced so as to compensate the state estimate filtered by Kalman filter. In order to verify the state estimation performance of the suggested technique, several simulations are accomplished.

Application of the uncertainty for insertion loss measurement of silencers (소음기 감음 성능 불확도 산출 방법 연구)

  • Yu, Seung-Guk;Kim, Dae-Hyeon;Kim, Yeong-Chan;Kim, Du-Hun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1675-1680
    • /
    • 2000
  • Recently the uncertainty has been made rapid progress in various fields of industry but the uncertainty measurement method of acoustical test (i.e. Insertion loss, Absorption ratio, Transmission loss etc,) hasn't been established. In this study, the uncertainty of measurement method for ducted silencers is carried out according to ISO 7235. The standard uncertainty factors are composed of sound pressure level, microphone sensitivity and pistonphone calibration in this measurement. Sound pressure level is type A evaluation of uncertainty, microphone sensitivity and pistonphone calibration are type B evaluation of uncertainty. The combined standard uncertainty is calculated by two type evaluation. The expanded uncertainty is expressed by the combined standard uncertainty multiply k value which is yield the effective degree of freedom.

  • PDF

Robust spectrum sensing under noise uncertainty for spectrum sharing

  • Kim, Chang-Joo;Jin, Eun Sook;Cheon, Kyung-yul;Kim, Seon-Hwan
    • ETRI Journal
    • /
    • v.41 no.2
    • /
    • pp.176-183
    • /
    • 2019
  • Spectrum sensing plays an important role in spectrum sharing. Energy detection is generally used because it does not require a priori knowledge of primary user (PU) signals; however, it is sensitive to noise uncertainty. An order statistics (OS) detector provides inherent protection against nonhomogeneous background signals. However, no analysis has been conducted yet to apply OS detection to spectrum sensing in a wireless channel to solve noise uncertainty. In this paper, we propose a robust spectrum sensing scheme based on generalized order statistics (GOS) and analyze the exact false alarm and detection probabilities under noise uncertainty. From the equation of the exact false alarm probability, the threshold value is calculated to maintain a constant false alarm rate. The detection probability is obtained from the calculated threshold under noise uncertainty. As a fusion rule for cooperative spectrum sensing, we adopt an OR rule, that is, a 1-out-of-N rule, and we call the proposed scheme GOS-OR. The analytical results show that the GOS-OR scheme can achieve optimum performance and maintain the desired false alarm rates if the coefficients of the GOS-OR detector can be correctly selected.

A Study on Estimation of Uncertainty in Measurement of Light Impact Sound Insulation of Floors (공동주택 경량바닥충격음 측정불확도 추정에 관한 연구)

  • Go, Jong-Chul;Lee, Jong-In;Kim, Hyun-Bae;Lee, Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1409-1416
    • /
    • 2006
  • In measuring, uncertainty in measurement is essential to improve measuring reliability. Currently, however, in measuring impact sound insulation of floors, there are no guidelines to estimate uncertainty in measurement. In addition, the concept of uncertainty in rating is required to recognize the relation between measuring and rating. Therefore, through this paper, the efforts have been made to establish uncertainty in measurement and rating of light impact insulation of floors. The result of estimating of uncertainty in measurement and rating in our laboratory is considered reliable, considering ${\pm}0.46{\sim}1.44dB$ of uncertainty in measurement and 1 dB of uncertainty in rating.

  • PDF