• Title/Summary/Keyword: Noise Power Ratio

Search Result 793, Processing Time 0.025 seconds

The Influence of Meditation Music and Noise on Heart Rate Variability (명상음악과 소음이 심장박동율 변동성에 미치는 영향)

  • 김원식;조문재
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.699-702
    • /
    • 2001
  • 본 연구에서는 생활공간에서의 음 환경이 인체에 미치는 영향을 조사하기 위하여 긍정감성 유발 음환경으로서 시냇물 흐르는 소리를 배경으로한 명상음악을 제시하고 부정감성을 유발하는 음환경으로서 '헬리콥터소음'과 '마루삐그덕 소음'을 제시하여 자율신경계 생리반응으로서 심전도의 HRV를 분석하였다. HRV는 AR(autoregressive) 모델로 구하였으며 Power spectrum을 LF(0.01 - 0.08 Hz), MF(0.08 - 0.15 Hz), HF(0.15 - 0.5 Hz) 영역으로 나누어 LF. MF. HF 영역의 Power 및 LF/HF와 MF/(LF+HF) Power Ratio를 분석하였다.

  • PDF

Vibration and Noise Control of Slab Using the Mass Type Damper (질량형 댐퍼를 이용한 바닥판의 진동 및 소음 저감)

  • Hwang, Jae-Seung;Park, Sung-Chul;Kim, Hong-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.597-602
    • /
    • 2007
  • It is proposed to analyze the vibration of slab with MTMD and vibration-induced noise. Substructure synthesis is introduced to develope the interaction between the slab and MTMD which are defined in different space and acoustic power is obtained from the velocity field of slab. Numerical analysis is performed to show that the vibration and noise of slab can be reduced by MTMD. A living room of wall type apartment including the wall and MTMD is modeled and analyzed by FEM program Numerical analysis shows that the vibration and noise control effect is different depending on the location and mass ratio of MTMD. Futhermore, noise is more effectively reduced when the vibration of higher modes of slab are reduced rather than lower modes.

  • PDF

A study on the Conducted Noise Reduction in Three-Phase Boost Converter using Random Pulse Width Modulation (Random PWM 기법을 이용한 3상 승압형 컨버터 전도노이즈 저감에 관한 연구)

  • Jung, Dong-Hyo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.3
    • /
    • pp.120-125
    • /
    • 2002
  • The switching-mode power converter has been widely used because of its features of high efficiency and small weight and size. These features are brought by the ON-OFF operation of semiconductor switching devices. However, this switching operation causes the surge and EMI(Electromagnetic Interference) which deteriorate the reliability of the converter themselves and entire electronic systems. This problem on the surge and noise is one of the most serious difficulties in AC-to-DC converter. In the switching-mode power converter, the output voltage is generally controlled by varying the duty ratio of main switch. When a converter operates in steady state, duty ratio of the converter is kept constant. So the power of switching noise is concentrated in specific frequencies. Generally, to reduce the EMI and improve the immunity of converter system, the switching frequency of converter needs to be properly modulated during a rectified line period instead of being kept constant. Random Pulse Width Modulation (RPWM) is performed by adding a random perturbation to switching instant while output-voltage regulation of converter is performed. RPWM method for reducing conducted EMI in single switch three phase discontinuous conduction mode boost converter is presented. The more white noise is injected, the more conducted EMI is reduced. But output-voltage is not sufficiently regulated. This is the reason why carrier frequency selection topology is proposed. In the case of carrier frequency selection, output-voltage of steady state and transient state is fully regulated. A RPWM control method was proposed in order to smooth the switching noise spectrum and reduce it's level. Experimental results are verified by converter operating at 300V/1kW with 5%~30% white noise input. Spectrum analysis is performed on the Phase current and the CM noise voltage. The former is measured with Current Probe and the latter is achieved with LISN, which are connected to the spectrum analyzer respectively.

Multi - channel Spectrum Analyzer for High Capacity Optical Transport Networks

  • Youn, Ji-Wook;Kim, Hyung-Joo;Lee, Jong-Hyun
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.249-252
    • /
    • 2003
  • A simple multi-channel spectrum analyzer using an InGaAs array sensor and a diffraction grating is proposed and developed for high-capacity optical transport networks. With the developed multichannel spectrum analyzer, we could measure signal power, wavelength, and optical signal-to-noise ratio of each channel for multi-channel optical signals with 100 GHz and 50 GHz channel spacing, simultaneously. We could measure each channel power and wavelength with a deviation of less than 0.2 dB and 0.063 nm, respectively. We have obtained optical signal-to-noise ratio with a deviation of less than 1.0 dB compared with conventional optical spectrum analyzer in the wide input power range between -42 dBm and -27 dBm per channel.

DWT-based Denoising and Power Quality Disturbance Detection

  • Ramzan, Muhammad;Choe, Sangho
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.5
    • /
    • pp.330-339
    • /
    • 2015
  • Power quality (PQ) problems are becoming a big issue, since delicate complex electronic devices are widely used. We present a new denoising technique using discrete wavelet transform (DWT), where a modified correlation thresholding is used in order to reliably detect the PQ disturbances. We consider various PQ disturbances on the basis of IEEE-1159 standard over noisy environments, including voltage swell, voltage sag, transient, harmonics, interrupt, and their combinations. These event signals are decomposed using DWT for the detection of disturbances. We then evaluate the PQ disturbance detection ratio of the proposed denoising scheme over Gaussian noise channels. Simulation results also show that the proposed scheme has an improved signal-to-noise ratio (SNR) over existing scheme.

Comprehensive Performance Analysis and Comparison of various Digital Communication Systems in an Multipath Fading Channel with additive Mixture of Gaussian and Impulsive Noise [Part-1] (가우스성 잡음과 임펄스성 잡음이 혼재하는 다중전파 페이딩 전송로상에서의 제반 디지털 통신 시스템 특성의 종합분석 및 비교에 관한 연구(제 1 부))

  • 김현철;고봉진;공병옥;조성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.14 no.3
    • /
    • pp.263-279
    • /
    • 1989
  • In part-1 of this paper, the error rate equations of digitally modulated signals transmitted though the Gaussian/Impulsive noise channel have been derived. Using the derived equations for the error probabilities of ASK, QAM, CPSK, DPSK, FSK and MSK signals, the error rate performances of digital modulation systems have been evaluated and represented in the figures as the functions of carrier-to-noise power ratio(CNR), impulsive index, and the ration of Gaussian noise power component to impulsive noise power component. The results are shown in graphs to known how much impulsive noise effects on digital signals than Gaussian noise.

  • PDF

Performance Comparison of the OFDM/SFH and OFDM/DS Systems in the Jamming Channel (OFDM/SFH와 OFDM/DS 시스템의 Jamming 채널에서 성능비교)

  • 박종현;김상우;유흥균;이상태
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.11
    • /
    • pp.1149-1155
    • /
    • 2003
  • OFDM/SFH(orthogonal frequency division multiplexing/slow frequency hopping) system is the combination of OFDM communication system with frequency hopping(FH) method and OFDM/DS(orthogonal frequency division multiplexing/direct sequence) system combines the OFDM communication system with direct sequence(DS) method in terms of PN(pseudo noise) sequence. These two systems are also can be used for anti-jamming. In this study we analyze performances of OFDM/SFH system and OFDM/DS system with the equal information rate in partial band jamming and tone jamming channel. We find BER(bit error rate) in the variation of JFR(jamming fractional ratio) and JSR(jamming to signal power ratio) of the partial band jamming. Also, BER is found in the several JSR of the single tone or multi tone jamming. OFDM/DS system shows better performance than OFDM/SFH system in partial band jamming environment. OFDM/DS system has about 2.5 ㏈ SNR(signal to noise power ratio) gains than OFDM/SFH system when JFR=4/16 and JSR=0 ㏈ to meet BER=10$\^$-3/. However, OFDM/SFH system has about 3 ㏈ SNR gains than OFDM/DS system at single tone jamming of JSR=5 ㏈. In multi tone jamming, performance of OFDM/SFH system is considerably degraded than OFDM/DS system.

Performance estimation of the noise reduction by window function on a single tone (단일 신호에 대한 창 함수의 잡음 제거 성능 평가)

  • Baek, Moon-Yeol;Kim, Byoung-Sam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.5
    • /
    • pp.38-43
    • /
    • 1996
  • Windowing routines have as their purpose the reduction of the sidelobes of a spectral output of the FFT or DFT routines. Windowing routines accomplish this by forcing the beginning and end of any sequence to approach each other in value. Since they must work with any sequence they force the beginning and ending samples near zero. To make up for this reduction in power, windowing routines give extra weight to the values near the middle of the sequence. The difference between windows is the way in which they transition from the low weights near the edges to the higher weights neqr the middle of the sequence. Signal-to-noise ratio(SNR) can be determined by the ratio of the output noisy signal variance to the input noisy signal variance of a window. Standard deviation of noise is reduced by windowing. Thus, the windowing operation improved the SNR of the noisy signal. This paper shows a performance estimation of windowing on a single tone with added Gaussian noise and uniform noise.

  • PDF

Evaluation of Robust Classifier Algorithm for Tissue Classification under Various Noise Levels

  • Youn, Su Hyun;Shin, Ki Young;Choi, Ahnryul;Mun, Joung Hwan
    • ETRI Journal
    • /
    • v.39 no.1
    • /
    • pp.87-96
    • /
    • 2017
  • Ultrasonic surgical devices are routinely used for surgical procedures. The incision and coagulation of tissue generate a temperature of $40^{\circ}C-150^{\circ}C$ and depend on the controllable output power level of the surgical device. Recently, research on the classification of grasped tissues to automatically control the power level was published. However, this research did not consider the specific characteristics of the surgical device, tissue denaturalization, and so on. Therefore, this research proposes a robust algorithm that simulates noise to resemble real situations and classifies tissue using conventional classifier algorithms. In this research, the bioimpedance spectrum for six tissues (liver, large intestine, kidney, lung, muscle, and fat) is measured, and five classifier algorithms are used. A signal-to-noise ratio of additive white Gaussian noise diversifies the testing sets, and as a result, each classifier's performance exhibits a difference. The k-nearest neighbors algorithm shows the highest classification rate of 92.09% (p < 0.01) and a standard deviation of 1.92%, which confirms high reproducibility.

A New Integrated Suppression Algorithm Based on Combined Power of Acoustic Echo and Background Noise (결합된 음향학적 반향 및 배경 잡음 전력에 기반한 새로운 통합 제거 알고리즘)

  • Park, Yun-Sik;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.6
    • /
    • pp.402-409
    • /
    • 2010
  • In this paper, we propose an efficient integrated suppression algorithm based on combined power of acoustic echo and background noise. The proposed method combines the acoustic echo and noise power by the weighting parameter derived from the decision rule based on the estimated echo to noise power ratio. Therefore, in the proposed approach, the acoustic echo and noise signal are able to be reduced through only one suppression filter based on the estimated combined power. The proposed unified structure improves the problems of the residual echo and noise resulted from the conventional unified structure where the noise suppression (NS) operation is placed after the acoustic echo suppression (AES) algorithm or vice versa. The performance of the proposed algorithm is evaluated by the objective test under various environments and yields better results compared with the conventional scheme.