• Title/Summary/Keyword: Nodes Clustering

Search Result 464, Processing Time 0.024 seconds

Clustering Algorithm to Equalize the Energy Consumption of Neighboring Node with Sink in Wireless Sensor Networks (무선 센서 네트워크에서 싱크 노드와 인접한 노드의 균등한 에너지 소모를 위한 클러스터링 알고리즘)

  • Jung, Jin-Wook;Jin, Kyo-Hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.465-468
    • /
    • 2008
  • Clustering techniques in wireless sensor networks is developed to minimize the energy consumption of node, show the effect that increases the network lifetime. Existing clustering techniques proposed the method that increases the network lifetime equalizing each node's the energy consumption by rotating the role of CH(Cluster Head), but these algorithm did not present the resolution that minimizes the energy consumption of neighboring nodes with sink. In this paper, we propose the clustering algorithm that prolongs the network lifetime by not including a part of nodes in POS(Personal Operating Space) of the sink in a cluster and communicating with sink directly to reduce the energy consumption of CH closed to sink.

  • PDF

Mobile Base Station Placement with BIRCH Clustering Algorithm for HAP Network (HAP 네트워크에서 BIRCH 클러스터링 알고리즘을 이용한 이동 기지국의 배치)

  • Chae, Jun-Byung;Song, Ha-Yoon
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.10
    • /
    • pp.761-765
    • /
    • 2009
  • This research aims an optimal placement of Mobile Base Station (MBS) under HAP based network configurations with the restrictions of HAP capabilities. With clustering algorithm based on BIRCH, mobile ground nodes are clustered and the centroid of the clusters will be the location of MBS. The hierarchical structure of BIRCH enables mobile node management by CF tree and the restrictions of maximum nodes per MBS and maximum radio coverage are accomplished by splitting and merging clusters. Mobility models based on Jeju island are used for simulations and such restrictions are met with proper placement of MBS.

Energy-Efficient Cluster Head Selection Method in Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율적 클러스터 헤드 선정 기법)

  • Nam, Choon-Sung;Jang, Kyung-Soo;Shin, Ho-Jin;Shin, Dong-Ryeol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.25-30
    • /
    • 2010
  • Wireless sensor networks is composed of many similar sensor nodes with limited resources. They are randomly scattered over a specific area and self-organize the network. For guarantee of network life time, load balancing and scalability in sensor networks, sensor networks needs the clustering algorithm which distribute the networks to a local cluster. In existing clustering algorithms, the cluster head selection method has two problems. One is additional communication cost for finding location and energy of nodes. Another is unequal clustering. To solve them, this paper proposes a novel cluster head selection algorithm revised previous clustering algorithm, LEACH. The simulation results show that the energy compared with the previous clustering method is reduced.

Data Correlation-Based Clustering Algorithm in Wireless Sensor Networks

  • Yeo, Myung-Ho;Seo, Dong-Min;Yoo, Jae-Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.3
    • /
    • pp.331-343
    • /
    • 2009
  • Many types of sensor data exhibit strong correlation in both space and time. Both temporal and spatial suppressions provide opportunities for reducing the energy cost of sensor data collection. Unfortunately, existing clustering algorithms are difficult to utilize the spatial or temporal opportunities, because they just organize clusters based on the distribution of sensor nodes or the network topology but not on the correlation of sensor data. In this paper, we propose a novel clustering algorithm based on the correlation of sensor data. We modify the advertisement sub-phase and TDMA schedule scheme to organize clusters by adjacent sensor nodes which have similar readings. Also, we propose a spatio-temporal suppression scheme for our clustering algorithm. In order to show the superiority of our clustering algorithm, we compare it with the existing suppression algorithms in terms of the lifetime of the sensor network and the size of data which have been collected in the base station. As a result, our experimental results show that the size of data is reduced and the whole network lifetime is prolonged.

Clustering Algorithm Considering Sensor Node Distribution in Wireless Sensor Networks

  • Yu, Boseon;Choi, Wonik;Lee, Taikjin;Kim, Hyunduk
    • Journal of Information Processing Systems
    • /
    • v.14 no.4
    • /
    • pp.926-940
    • /
    • 2018
  • In clustering-based approaches, cluster heads closer to the sink are usually burdened with much more relay traffic and thus, tend to die early. To address this problem, distance-aware clustering approaches, such as energy-efficient unequal clustering (EEUC), that adjust the cluster size according to the distance between the sink and each cluster head have been proposed. However, the network lifetime of such approaches is highly dependent on the distribution of the sensor nodes, because, in randomly distributed sensor networks, the approaches do not guarantee that the cluster energy consumption will be proportional to the cluster size. To address this problem, we propose a novel approach called CACD (Clustering Algorithm Considering node Distribution), which is not only distance-aware but also node density-aware approach. In CACD, clusters are allowed to have limited member nodes, which are determined by the distance between the sink and the cluster head. Simulation results show that CACD is 20%-50% more energy-efficient than previous work under various operational conditions considering the network lifetime.

DDCP: The Dynamic Differential Clustering Protocol Considering Mobile Sinks for WSNs

  • Hyungbae Park;Joongjin Kook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1728-1742
    • /
    • 2023
  • In this paper, we extended a hierarchical clustering technique, which is the most researched in the sensor network field, and studied a dynamic differential clustering technique to minimize energy consumption and ensure equal lifespan of all sensor nodes while considering the mobility of sinks. In a sensor network environment with mobile sinks, clusters close to the sinks tend to consume more forwarding energy. Therefore, clustering that considers forwarding energy consumption is desired. Since all clusters form a hierarchical tree, the number of levels of the tree must be considered based on the size of the cluster so that the cluster size is not growing abnormally, and the energy consumption is not concentrated within specific clusters. To verify that the proposed DDC protocol satisfies these requirements, a simulation using Matlab was performed. The FND (First Node Dead), LND (Last Node Dead), and residual energy characteristics of the proposed DDC protocol were compared with the popular clustering protocols such as LEACH and EEUC. As a result, it was shown that FND appears the latest and the point at which the dead node count increases is delayed in the DDC protocol. The proposed DDC protocol presents 66.3% improvement in FND and 13.8% improvement in LND compared to LEACH protocol. Furthermore, FND improved 79.9%, but LND declined 33.2% when compared to the EEUC. This verifies that the proposed DDC protocol can last for longer time with more number of surviving nodes.

An Adaptive Regional Clustering Scheme Based on Threshold-Dataset in Wireless Sensor Networks for Monitoring of Weather Conditions (기상감시 무선 센서 네트워크에 적합한 Threshold-dataset 기반 지역적 클러스터링 기법)

  • Choi, Dong-Min;Shen, Jian;Chung, Il-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.10
    • /
    • pp.1287-1302
    • /
    • 2011
  • Clustering protocol that is used in wireless sensor network is an efficient method that extends the lifetime of the network. However, when this method is applied to an environment in which collected data of the sensor node easily overlap, sensor nodes unnecessarily consumes energy. In the case of clustering technique that uses a threshold, the lifetime of the network is extended but the degree of accuracy of collected data is low. Therefore it is hard to trust the data and improvement is needed. In addition, it is hard for the clustering protocol that uses multi-hop transmission to normally collect data because the selection of a cluster head node occurs at random and therefore the link of nodes is often disconnected. Accordingly this paper suggested a cluster-formation algorithm that reduces unnecessary energy consumption and that works with an alleviated link disconnection. According to the result of performance analysis, the suggested method lets the nodes consume less energy than the existing clustering method and the transmission efficiency is increased and the entire lifetime is prolonged by about 30%.

A Routing Method Considering Sensed Data in Wireless Sensor Networks (무선 센서 네트워크에서 데이터 센싱을 고려한 라우팅 기법)

  • Song, Chang-Young;Lee, Sang-Won;Cho, Seong-Soo;Kim, Seong-Ihl;Won, Young-Jin;Kang, June-Gill
    • 전자공학회논문지 IE
    • /
    • v.47 no.1
    • /
    • pp.41-47
    • /
    • 2010
  • It is very important to prolong the lifetime of wireless sensor networks by using their limited energy efficiently, since it is not possible to change or recharge the battery of sensor nodes after deployment. LEACH protocol is a typical routing protocol based on the clustering scheme for the efficient use of limited energy. It is composed of a few clusters, which consist of head nodes and member nodes. Though LEACH starts from the supposition that all nodes have data transferred to a head, there must be some nodes having useless data in actual state. In this paper we propose a power saving scheme by making a member node dormant if previous sensed data and current data is same. We evaluate the performance of the proposed scheme in comparison with original clustering algorithms. Simulation results validate our scheme has better performance in terms of the number of alive nodes as time evolves.

Modified LEACH Protocol improving the Time of Topology Reconfiguration in Container Environment (컨테이너 환경에서 토플로지 재구성 시간을 개선한 변형 LEACH 프로토콜)

  • Lee, Yang-Min;Yi, Ki-One;Kwark, Gwang-Hoon;Lee, Jae-Kee
    • The KIPS Transactions:PartC
    • /
    • v.15C no.4
    • /
    • pp.311-320
    • /
    • 2008
  • In general, routing algorithms that were applied to ad-hoc networks are not suitable for the environment with many nodes over several thousands. To solve this problem, hierarchical management to these nodes and clustering-based protocols for the stable maintenance of topology are used. In this paper, we propose the clustering-based modified LEACH protocol that can applied to an environment which moves around metal containers within communication nodes. In proposed protocol, we implemented a module for detecting the movement of nodes on the clustering-based LEACH protocol and improved the defect of LEACH in an environment with movable nodes. And we showed the possibility of the effective communication by adjusting the configuration method of multi-hop. We also compared the proposed protocol with LEACH in four points of view, which are a gradual network composition time, a reconfiguration time of a topology, a success ratio of communication on an containers environment, and routing overheads. And to conclude, we verified that the proposed protocol is better than original LEACH protocol in the metal containers environment within communication of nodes.

A Simulation of Mobile Base Station Placement for HAP based Networks by Clustering of Mobile Ground Nodes (지상 이동 노드의 클러스터링을 이용한 HAP 기반 네트워크의 이동 기지국 배치 시뮬레이션)

  • Song, Ha-Yoon
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.11
    • /
    • pp.1525-1535
    • /
    • 2008
  • High Altitude Platform (HAP) based networks deploy network infrastructures of Mobile Base Station (MBS) in a form of Unmanned Aerial Vehicle (UAV) at stratosphere in order to build network configuration. The ultimate goal of HAP based network is a wireless network service for wide area by deploying multiple MBS for such area. In this paper we assume multiple UAVs over designated area and solve the MBS placement and coverage problem by clustering the mobile ground nodes. For this study we assumed area around Cheju island and nearby naval area where multiple mobile and fixed nodes are deployed and requires HAP based networking service. By simulation, visual results of stratospheric MBS placement have been presented. These results include clustering, MBS placement and coverage as well as dynamic reclustering according to the movement of mobile ground nodes.

  • PDF