IoT(사물인터넷) 기술의 빠른 개발로 인하여 기존의 택시들은 디스패처와 위치 시스템을 통해 서로 연결되고 있다. 일반적으로 현대의 택시들은 경로 정보를 획득하기 위한 목적으로 GPS(Global Positioning System)를 탑재하고 있다. 택시 운행 데이터들의 경로 빈도를 분석하여, 주어진 질의 시간에 해당하는 빈번한 경로를 찾을 수 있다. 그러나 위치 데이터의 용량이 매우 크고 복잡하기 때문에 택시의 운행 이벤트의 위치 데이터를 분석된 빈도 정보로 변환할 때에 확장성 문제가 발생한다. 이 문제를 해결하기 위하여, NoSQL 데이터베이스에 기반한 택시 운행 데이터에 대한 Top-K 질의 시스템을 제안한다. 첫째, 원시 택시 운행 이벤트를 분석하고 모든 경로들의 빈도 정보를 추출한다. 추출한 경로 정보는 NoSQL 문서-지향 데이터베이스인 MongoDB에 해시 기반의 인덱스 구조로 저장한다. 주로 발생하는 경로에 대한 효율적인 Top-K 질의 처리는 몽고DB의 상에서 이루어진다. 미국 뉴욕시의 실제 택시 운행 데이터를 이용한 실험을 통하여 알고리즘의 효율성을 검증하였다.
ArangoDB는 대용량 데이터 저장을 위해 많은 응용에서 활용되고 있는 NoSQL 데이터베이스 시스템이다. ArangoDB와 같은 새로운 NoSQL 데이터베이스 시스템을 실제 환경에 적용하기 위해서 성능을 평가해 줄 수 있는 벤치마킹 시스템이 필요하다. 본 논문에서는 응용 계층뿐만 아니라 커널 계층에서의 성능이 측정 가능한 ArangoDB 기반 벤치마킹 시스템을 설계하고 구현한다. 클러스터 환경에서의 NoSQL 데이터베이스 시스템 성능을 측정하기 위해서 YCSB를 일부 수정한다. 또한, 기존 자료 분석을 통해 실세계에서 발생하는 세가지 워크로드 유형을 정의한다. 세 가지 워크로드 유형의 벤치마킹을 통해 ArangoDB에서 활용 가능한 워크로드를 도출하였고, 응용 계층뿐만 아니라 커널 계층의 성능이 가시화될 수 있음을 입증하였다. 기존 데이터베이스에서 ArangoDB로 데이터 이전 작업이 필요한 환경에서는 본 시스템의 벤치마킹을 통해 적용 가능성과 리스크 검토가 가능할 것으로 기대된다.
인터넷과 클라우드 서비스 사용이 증가하면서 패킷의 양과 사이버 위협이 증가하였다. 본 논문에서는 빅데이터를 처리하기 위해 사용되는 NoSQL을 보안이벤트의 신속한 처리를 위한 침입탐지시스템에 적용하였다. 다양한 데이터 모델 유형의 NoSQL 데이터베이스 중에서 빅데이터 보안이벤트를 처리하는데 가장 적합한 시스템을 찾기 위해 세 가지 유형의 Snort 룰 기반 보안이벤트 분산 처리 프로토타입 시스템들을 구축하였고 각 시스템의 성능을 평가하였다. 그 결과로 MongoDB 기반의 보안이벤트 분산 처리 시스템이 가장 속도가 빠른 것을 확인하였다.
The increasing number of multimedia content offered to the user demands content recommendation. In this paper, we propose a system for recommending content related to the content that user is watching. In the proposed system, relationship information between content is generated using relationship information between representative keywords of content. Relationship information between keywords is generated by analyzing keyword collocation frequencies in Internet news corpus. In order to handle big corpus data, we design an architecture that consists of a distributed search engine and a distributed data processing engine. Furthermore, we store relationship information between keywords and relationship information between keywords and content in NoSQL to handle big relationship data. Because the query optimizer of NoSQL is not as well developed as RDBMS, we propose query optimization techniques to efficiently process complex queries for recommendation. Experimental results show that the performance is improved by up to 69 times by using the proposed techniques, especially when the number of requested related keywords is small.
컴퓨터 시스템 운용 간에 발생하는 많은 정보들이 기록되는 로그데이터는 컴퓨터 시스템 운용 점검, 프로세스의 최적화, 사용자 최적화 맞춤형 제공 등 다방면으로 활용되고 있다. 본 논문에서는 다양한 종류의 로그데이터들 중에서 은행에서 발생하는 대용량의 로그데이터를 처리하기 위한 클라우드 환경 하에서의 MongoDB 기반 비정형 로그 처리시스템을 제안한다. 은행업무간 발생하는 대부분의 로그데이터는 고객의 업무처리 프로세스 간에 발생하며, 고객 업무 프로세스 처리에 따른 로그데이터를 수집, 저장, 분류, 분석하기 위해서는 별도로 로그데이터를 처리하는 시스템을 구축해야만 한다. 하지만 기존 컴퓨팅환경 하에서는 폭발적으로 증가하는 대용량 비정형 로그데이터 처리를 위한 유연한 스토리지 확장성 기능, 저장된 비정형 로그데이터를 분류, 분석 처리할 수 있는 기능을 구현하기가 매우 어렵다. 이에 따라 본 논문에서는 클라우드 컴퓨팅 기술을 도입하여 기존 컴퓨팅 인프라 환경의 분석 도구 및 관리체계에서 처리하기 어려웠던 비정형 로그데이터를 처리하기 위한 클라우드 환경기반의 로그데이터 처리시스템을 제안하고 구현하였다. 제안한 본 시스템은 IaaS(Infrastructure as a Service) 클라우드 환경을 도입하여 컴퓨팅 자원의 유연한 확장성을 제공하며 실제로, 로그데이터가 장기간 축적되거나 급격하게 증가하는 상황에서 스토리지, 메모리 등의 자원을 신속성 있고 유연하게 확장을 할 수 있는 기능을 포함한다. 또한, 축적된 비정형 로그데이터의 실시간 분석이 요구되어질 때 기존의 분석도구의 처리한계를 극복하기 위해 본 시스템은 하둡 (Hadoop) 기반의 분석모듈을 도입함으로써 대용량의 로그데이터를 빠르고 신뢰성 있게 병렬 분산 처리할 수 있는 기능을 제공한다. 게다가, HDFS(Hadoop Distributed File System)을 도입함으로써 축적된 로그데이터를 블록단위로 복제본을 생성하여 저장관리하기 때문에 본 시스템은 시스템 장애와 같은 상황에서 시스템이 멈추지 않고 작동할 수 있는 자동복구 기능을 제공한다. 마지막으로, 본 시스템은 NoSQL 기반의 MongoDB를 이용하여 분산 데이터베이스를 구축함으로써 효율적으로 비정형로그데이터를 처리하는 기능을 제공한다. MySQL과 같은 관계형 데이터베이스는 복잡한 스키마 구조를 가지고 있기 때문에 비정형 로그데이터를 처리하기에 적합하지 않은 구조를 가지고 있다. 또한, 관계형 데이터베이스의 엄격한 스키마 구조는 장기간 데이터가 축적되거나, 데이터가 급격하게 증가할 때 저장된 데이터를 분할하여 여러 노드에 분산시키는 노드 확장이 어렵다는 문제점을 가지고 있다. NoSQL은 관계형 데이터베이스에서 제공하는 복잡한 연산을 지원하지는 않지만 데이터가 빠르게 증가할 때 노드 분산을 통한 데이터베이스 확장이 매우 용이하며 비정형 데이터를 처리하는데 매우 적합한 구조를 가지고 있는 비관계형 데이터베이스이다. NoSQL의 데이터 모델은 주로 키-값(Key-Value), 컬럼지향(Column-oriented), 문서지향(Document-Oriented)형태로 구분되며, 제안한 시스템은 스키마 구조가 자유로운 문서지향(Document-Oriented) 데이터 모델의 대표 격인 MongoDB를 도입하였다. 본 시스템에 MongoDB를 도입한 이유는 유연한 스키마 구조에 따른 비정형 로그데이터 처리의 용이성뿐만 아니라, 급격한 데이터 증가에 따른 유연한 노드 확장, 스토리지 확장을 자동적으로 수행하는 오토샤딩 (AutoSharding) 기능을 제공하기 때문이다. 본 논문에서 제안하는 시스템은 크게 로그 수집기 모듈, 로그 그래프생성 모듈, MongoDB 모듈, Hadoop기반 분석 모듈, MySQL 모듈로 구성되어져 있다. 로그 수집기 모듈은 각 은행에서 고객의 업무 프로세스 시작부터 종료 시점까지 발생하는 로그데이터가 클라우드 서버로 전송될 때 로그데이터 종류에 따라 데이터를 수집하고 분류하여 MongoDB 모듈과 MySQL 모듈로 분배하는 기능을 수행한다. 로그 그래프생성 모듈은 수집된 로그데이터를 분석시점, 분석종류에 따라 MongoDB 모듈, Hadoop기반 분석 모듈, MySQL 모듈에 의해서 분석되어진 결과를 사용자에게 웹 인터페이스 형태로 제공하는 역할을 한다. 실시간적 로그데이터분석이 필요한 로그데이터는 MySQL 모듈로 저장이 되어 로그 그래프생성 모듈을 통하여 실시간 로그데이터 정보를 제공한다. 실시간 분석이 아닌 단위시간당 누적된 로그데이터의 경우 MongoDB 모듈에 저장이 되고, 다양한 분석사항에 따라 사용자에게 그래프화해서 제공된다. MongoDB 모듈에 누적된 로그데이터는 Hadoop기반 분석모듈을 통해서 병렬 분산 처리 작업이 수행된다. 성능 평가를 위하여 로그데이터 삽입, 쿼리 성능에 대해서 MySQL만을 적용한 로그데이터 처리시스템과 제안한 시스템을 비교 평가하였으며 그 성능의 우수성을 검증하였다. 또한, MongoDB의 청크 크기별 로그데이터 삽입 성능평가를 통해 최적화된 청크 크기를 확인하였다.
IT 기술 발전과 스마트 기기의 대중화로 인해 SNS(Social Networking Service)를 사용하는 사용자들이 증가하고 있다. 이로 인해 SNS에서 발생하는 데이터들도 급증하고 있고, 이러한 데이터에서 가치를 창출하기 위해 IT 기업들은 기술 개발을 하고 있다. 본 논문에서는 트위터에서 발생하는 데이터의 가치를 창출하기 위해 트위터에 접속하는 정보를 통계 내는 시스템을 설계하고 구현하고자 한다. 제안하는 시스템은 트위터 데이터를 수집하고 NoSQL 기반으로 저장한 뒤에 Mahout 사용하여 사용자들의 접속 정보를 통계 내는 시스템이다. 개발 시스템을 이용하면 트위터 데이터에서 가치를 창출하기 위해 필요한 기술 개발의 배경 마련에 도움이 될 것이라고 예상된다.
센서정보 관리를 위해서는 다양하고 수많은 센서의 정보를 신속하게 저장, 수정, 삭제 할 수 있는 기능을 제공해야 한다. 본 연구에서는 Celery 와 MongoDB 를 활용하여 위의 조건에 부합한 센서정보 관리 시스템을 설계 및 구현하였다. Celery 는 파이썬으로 개발된 비동기 통신을 기반으로 하는 큐구조를 제공하고 있다. 그리고 이것은 분산된 작업 큐 구조이고 단순하지만 많은 양의 메시지를 처리하기에 적합한 신뢰성 있는 분산 시스템이다. MongoDB 는 NoSQL 데이터베이스로써 다양한 정보 표현을 저장할 수 있고 검색할 수 있다. 본 연구에서는 개발한 시스템을 활용한 실험을 통해 IoT 환경에서 제공되는 다양한 센서를 관리할 수 있음을 확인할 수 있었다. 센서데이터를 갖는 메시지를 처리하기 위한 성능을 개선하기 위해 본 시스템은 클라우드 하부구조의 에지단에 배치되어 사용한다.
A data warehouse is a system that collectively manages and integrates data of a company. And provides the basis for decision making for management strategy. Nowadays, analysis data volumes are reaching critical size challenging traditional data ware housing approaches. Current implemented solutions are mainly based on relational database that are no longer adapted to these data volume. NoSQL solutions allow us to consider new approaches for data warehousing, especially from the multidimensional data management point of view. In this paper, we extend the data warehouse design methodology based on relational database using star schema, and have developed a consistent design methodology from information requirement analysis to data warehouse construction for large scale data warehouse construction based on MongoDB, one of NoSQL.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권8호
/
pp.3182-3202
/
2015
Flexibly expanding the storage capacity required to process a large amount of rapidly increasing unstructured log data is difficult in a conventional computing environment. In addition, implementing a log processing system providing features that categorize and analyze unstructured log data is extremely difficult. To overcome such limitations, we propose and design a MongoDB-based unstructured log processing system (MdbULPS) for collecting, categorizing, and analyzing log data generated from banks. The proposed system includes a Hadoop-based analysis module for reliable parallel-distributed processing of massive log data. Furthermore, because the Hadoop distributed file system (HDFS) stores data by generating replicas of collected log data in block units, the proposed system offers automatic system recovery against system failures and data loss. Finally, by establishing a distributed database using the NoSQL-based MongoDB, the proposed system provides methods of effectively processing unstructured log data. To evaluate the proposed system, we conducted three different performance tests on a local test bed including twelve nodes: comparing our system with a MySQL-based approach, comparing it with an Hbase-based approach, and changing the chunk size option. From the experiments, we found that our system showed better performance in processing unstructured log data.
음원 서비스의 주요 기능 중 하나인 내용 기반 검색을 위해 음원의 지문을 채취하여 데이타베이스에 저장하고 색인하여 검색에 활용하는 기법이 널리 사용되고 있다. 그런데 지속적으로 추가되는 신규 음원의 지문이 기존의 데이타베이스에 계속 삽입되면 공간 효율 및 음원 검색 성능의 저하가 점차 초래되는 문제점이 있다. 따라서 시스템 운용 비용의 증가를 가져오는 주기적인 데이터 베이스 재구성 없이 효율적인 음원 데이타베이스의 확장을 지원하는 기법이 요구된다. 본 논문에서는 샤잠의 지문 채취 알고리즘을 기반으로 클러스터 컴퓨팅 환경에서 맵리듀스 및 NoSQL 데이타베이스를 사용하여 이러한 문제를 해결하는 내용 기반 음원 검색 시스템의 설계를 제시하고 실제 음원 데이터를 이용한 다양한 실험을 통해 그 성능을 평가한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.