• 제목/요약/키워드: NoSQL System

검색결과 82건 처리시간 0.034초

택시 데이터에 대한 효율적인 Top-K 빈도 검색 (Finding Frequent Route of Taxi Trip Events Based on MapReduce and MongoDB)

  • ;안성아;;정한유;권준호
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제4권9호
    • /
    • pp.347-356
    • /
    • 2015
  • IoT(사물인터넷) 기술의 빠른 개발로 인하여 기존의 택시들은 디스패처와 위치 시스템을 통해 서로 연결되고 있다. 일반적으로 현대의 택시들은 경로 정보를 획득하기 위한 목적으로 GPS(Global Positioning System)를 탑재하고 있다. 택시 운행 데이터들의 경로 빈도를 분석하여, 주어진 질의 시간에 해당하는 빈번한 경로를 찾을 수 있다. 그러나 위치 데이터의 용량이 매우 크고 복잡하기 때문에 택시의 운행 이벤트의 위치 데이터를 분석된 빈도 정보로 변환할 때에 확장성 문제가 발생한다. 이 문제를 해결하기 위하여, NoSQL 데이터베이스에 기반한 택시 운행 데이터에 대한 Top-K 질의 시스템을 제안한다. 첫째, 원시 택시 운행 이벤트를 분석하고 모든 경로들의 빈도 정보를 추출한다. 추출한 경로 정보는 NoSQL 문서-지향 데이터베이스인 MongoDB에 해시 기반의 인덱스 구조로 저장한다. 주로 발생하는 경로에 대한 효율적인 Top-K 질의 처리는 몽고DB의 상에서 이루어진다. 미국 뉴욕시의 실제 택시 운행 데이터를 이용한 실험을 통하여 알고리즘의 효율성을 검증하였다.

ArangoDB기반 벤치마킹 시스템 설계 및 구현 (Design and Implementation of a Benchmarking System Based on ArangoDB)

  • 최도진;백연희;이소민;김윤아;김남영;최재용;이현병;임종태;복경수;송석일;유재수
    • 한국콘텐츠학회논문지
    • /
    • 제21권9호
    • /
    • pp.198-208
    • /
    • 2021
  • ArangoDB는 대용량 데이터 저장을 위해 많은 응용에서 활용되고 있는 NoSQL 데이터베이스 시스템이다. ArangoDB와 같은 새로운 NoSQL 데이터베이스 시스템을 실제 환경에 적용하기 위해서 성능을 평가해 줄 수 있는 벤치마킹 시스템이 필요하다. 본 논문에서는 응용 계층뿐만 아니라 커널 계층에서의 성능이 측정 가능한 ArangoDB 기반 벤치마킹 시스템을 설계하고 구현한다. 클러스터 환경에서의 NoSQL 데이터베이스 시스템 성능을 측정하기 위해서 YCSB를 일부 수정한다. 또한, 기존 자료 분석을 통해 실세계에서 발생하는 세가지 워크로드 유형을 정의한다. 세 가지 워크로드 유형의 벤치마킹을 통해 ArangoDB에서 활용 가능한 워크로드를 도출하였고, 응용 계층뿐만 아니라 커널 계층의 성능이 가시화될 수 있음을 입증하였다. 기존 데이터베이스에서 ArangoDB로 데이터 이전 작업이 필요한 환경에서는 본 시스템의 벤치마킹을 통해 적용 가능성과 리스크 검토가 가능할 것으로 기대된다.

빅데이터 보안이벤트 처리를 위한 NoSQL 기반 분산 처리 시스템 (NoSQL-based Distributed Processing System for Processing BigData Security Events)

  • 한효준;강지원;정용환;김양우
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 춘계학술발표대회
    • /
    • pp.90-93
    • /
    • 2017
  • 인터넷과 클라우드 서비스 사용이 증가하면서 패킷의 양과 사이버 위협이 증가하였다. 본 논문에서는 빅데이터를 처리하기 위해 사용되는 NoSQL을 보안이벤트의 신속한 처리를 위한 침입탐지시스템에 적용하였다. 다양한 데이터 모델 유형의 NoSQL 데이터베이스 중에서 빅데이터 보안이벤트를 처리하는데 가장 적합한 시스템을 찾기 위해 세 가지 유형의 Snort 룰 기반 보안이벤트 분산 처리 프로토타입 시스템들을 구축하였고 각 시스템의 성능을 평가하였다. 그 결과로 MongoDB 기반의 보안이벤트 분산 처리 시스템이 가장 속도가 빠른 것을 확인하였다.

NoSQL 기반 연관 콘텐츠 추천 시스템의 설계 및 구현 (Design and Implementation of a System for Recommending Related Content Using NoSQL)

  • 고은정;김호준;박효주;전영호;이기훈;신사임
    • 한국멀티미디어학회논문지
    • /
    • 제20권9호
    • /
    • pp.1541-1550
    • /
    • 2017
  • The increasing number of multimedia content offered to the user demands content recommendation. In this paper, we propose a system for recommending content related to the content that user is watching. In the proposed system, relationship information between content is generated using relationship information between representative keywords of content. Relationship information between keywords is generated by analyzing keyword collocation frequencies in Internet news corpus. In order to handle big corpus data, we design an architecture that consists of a distributed search engine and a distributed data processing engine. Furthermore, we store relationship information between keywords and relationship information between keywords and content in NoSQL to handle big relationship data. Because the query optimizer of NoSQL is not as well developed as RDBMS, we propose query optimization techniques to efficiently process complex queries for recommendation. Experimental results show that the performance is improved by up to 69 times by using the proposed techniques, especially when the number of requested related keywords is small.

클라우드 환경에서 MongoDB 기반의 비정형 로그 처리 시스템 설계 및 구현 (Design and Implementation of MongoDB-based Unstructured Log Processing System over Cloud Computing Environment)

  • 김명진;한승호;최운;이한구
    • 인터넷정보학회논문지
    • /
    • 제14권6호
    • /
    • pp.71-84
    • /
    • 2013
  • 컴퓨터 시스템 운용 간에 발생하는 많은 정보들이 기록되는 로그데이터는 컴퓨터 시스템 운용 점검, 프로세스의 최적화, 사용자 최적화 맞춤형 제공 등 다방면으로 활용되고 있다. 본 논문에서는 다양한 종류의 로그데이터들 중에서 은행에서 발생하는 대용량의 로그데이터를 처리하기 위한 클라우드 환경 하에서의 MongoDB 기반 비정형 로그 처리시스템을 제안한다. 은행업무간 발생하는 대부분의 로그데이터는 고객의 업무처리 프로세스 간에 발생하며, 고객 업무 프로세스 처리에 따른 로그데이터를 수집, 저장, 분류, 분석하기 위해서는 별도로 로그데이터를 처리하는 시스템을 구축해야만 한다. 하지만 기존 컴퓨팅환경 하에서는 폭발적으로 증가하는 대용량 비정형 로그데이터 처리를 위한 유연한 스토리지 확장성 기능, 저장된 비정형 로그데이터를 분류, 분석 처리할 수 있는 기능을 구현하기가 매우 어렵다. 이에 따라 본 논문에서는 클라우드 컴퓨팅 기술을 도입하여 기존 컴퓨팅 인프라 환경의 분석 도구 및 관리체계에서 처리하기 어려웠던 비정형 로그데이터를 처리하기 위한 클라우드 환경기반의 로그데이터 처리시스템을 제안하고 구현하였다. 제안한 본 시스템은 IaaS(Infrastructure as a Service) 클라우드 환경을 도입하여 컴퓨팅 자원의 유연한 확장성을 제공하며 실제로, 로그데이터가 장기간 축적되거나 급격하게 증가하는 상황에서 스토리지, 메모리 등의 자원을 신속성 있고 유연하게 확장을 할 수 있는 기능을 포함한다. 또한, 축적된 비정형 로그데이터의 실시간 분석이 요구되어질 때 기존의 분석도구의 처리한계를 극복하기 위해 본 시스템은 하둡 (Hadoop) 기반의 분석모듈을 도입함으로써 대용량의 로그데이터를 빠르고 신뢰성 있게 병렬 분산 처리할 수 있는 기능을 제공한다. 게다가, HDFS(Hadoop Distributed File System)을 도입함으로써 축적된 로그데이터를 블록단위로 복제본을 생성하여 저장관리하기 때문에 본 시스템은 시스템 장애와 같은 상황에서 시스템이 멈추지 않고 작동할 수 있는 자동복구 기능을 제공한다. 마지막으로, 본 시스템은 NoSQL 기반의 MongoDB를 이용하여 분산 데이터베이스를 구축함으로써 효율적으로 비정형로그데이터를 처리하는 기능을 제공한다. MySQL과 같은 관계형 데이터베이스는 복잡한 스키마 구조를 가지고 있기 때문에 비정형 로그데이터를 처리하기에 적합하지 않은 구조를 가지고 있다. 또한, 관계형 데이터베이스의 엄격한 스키마 구조는 장기간 데이터가 축적되거나, 데이터가 급격하게 증가할 때 저장된 데이터를 분할하여 여러 노드에 분산시키는 노드 확장이 어렵다는 문제점을 가지고 있다. NoSQL은 관계형 데이터베이스에서 제공하는 복잡한 연산을 지원하지는 않지만 데이터가 빠르게 증가할 때 노드 분산을 통한 데이터베이스 확장이 매우 용이하며 비정형 데이터를 처리하는데 매우 적합한 구조를 가지고 있는 비관계형 데이터베이스이다. NoSQL의 데이터 모델은 주로 키-값(Key-Value), 컬럼지향(Column-oriented), 문서지향(Document-Oriented)형태로 구분되며, 제안한 시스템은 스키마 구조가 자유로운 문서지향(Document-Oriented) 데이터 모델의 대표 격인 MongoDB를 도입하였다. 본 시스템에 MongoDB를 도입한 이유는 유연한 스키마 구조에 따른 비정형 로그데이터 처리의 용이성뿐만 아니라, 급격한 데이터 증가에 따른 유연한 노드 확장, 스토리지 확장을 자동적으로 수행하는 오토샤딩 (AutoSharding) 기능을 제공하기 때문이다. 본 논문에서 제안하는 시스템은 크게 로그 수집기 모듈, 로그 그래프생성 모듈, MongoDB 모듈, Hadoop기반 분석 모듈, MySQL 모듈로 구성되어져 있다. 로그 수집기 모듈은 각 은행에서 고객의 업무 프로세스 시작부터 종료 시점까지 발생하는 로그데이터가 클라우드 서버로 전송될 때 로그데이터 종류에 따라 데이터를 수집하고 분류하여 MongoDB 모듈과 MySQL 모듈로 분배하는 기능을 수행한다. 로그 그래프생성 모듈은 수집된 로그데이터를 분석시점, 분석종류에 따라 MongoDB 모듈, Hadoop기반 분석 모듈, MySQL 모듈에 의해서 분석되어진 결과를 사용자에게 웹 인터페이스 형태로 제공하는 역할을 한다. 실시간적 로그데이터분석이 필요한 로그데이터는 MySQL 모듈로 저장이 되어 로그 그래프생성 모듈을 통하여 실시간 로그데이터 정보를 제공한다. 실시간 분석이 아닌 단위시간당 누적된 로그데이터의 경우 MongoDB 모듈에 저장이 되고, 다양한 분석사항에 따라 사용자에게 그래프화해서 제공된다. MongoDB 모듈에 누적된 로그데이터는 Hadoop기반 분석모듈을 통해서 병렬 분산 처리 작업이 수행된다. 성능 평가를 위하여 로그데이터 삽입, 쿼리 성능에 대해서 MySQL만을 적용한 로그데이터 처리시스템과 제안한 시스템을 비교 평가하였으며 그 성능의 우수성을 검증하였다. 또한, MongoDB의 청크 크기별 로그데이터 삽입 성능평가를 통해 최적화된 청크 크기를 확인하였다.

트위터 기반 접속 정보 통계 시스템 (Information Statistics Systems on Access to Twitter-Based)

  • 양새동;정회경
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 춘계학술대회
    • /
    • pp.541-543
    • /
    • 2015
  • IT 기술 발전과 스마트 기기의 대중화로 인해 SNS(Social Networking Service)를 사용하는 사용자들이 증가하고 있다. 이로 인해 SNS에서 발생하는 데이터들도 급증하고 있고, 이러한 데이터에서 가치를 창출하기 위해 IT 기업들은 기술 개발을 하고 있다. 본 논문에서는 트위터에서 발생하는 데이터의 가치를 창출하기 위해 트위터에 접속하는 정보를 통계 내는 시스템을 설계하고 구현하고자 한다. 제안하는 시스템은 트위터 데이터를 수집하고 NoSQL 기반으로 저장한 뒤에 Mahout 사용하여 사용자들의 접속 정보를 통계 내는 시스템이다. 개발 시스템을 이용하면 트위터 데이터에서 가치를 창출하기 위해 필요한 기술 개발의 배경 마련에 도움이 될 것이라고 예상된다.

  • PDF

Celery-MongoDB 를 활용한 센서정보 관리시스템 설계 및 구현 (Design and Implementation of Sensor Information Management System based on Celery-MongoDB)

  • 강윤희
    • Journal of Platform Technology
    • /
    • 제9권2호
    • /
    • pp.3-9
    • /
    • 2021
  • 센서정보 관리를 위해서는 다양하고 수많은 센서의 정보를 신속하게 저장, 수정, 삭제 할 수 있는 기능을 제공해야 한다. 본 연구에서는 Celery 와 MongoDB 를 활용하여 위의 조건에 부합한 센서정보 관리 시스템을 설계 및 구현하였다. Celery 는 파이썬으로 개발된 비동기 통신을 기반으로 하는 큐구조를 제공하고 있다. 그리고 이것은 분산된 작업 큐 구조이고 단순하지만 많은 양의 메시지를 처리하기에 적합한 신뢰성 있는 분산 시스템이다. MongoDB 는 NoSQL 데이터베이스로써 다양한 정보 표현을 저장할 수 있고 검색할 수 있다. 본 연구에서는 개발한 시스템을 활용한 실험을 통해 IoT 환경에서 제공되는 다양한 센서를 관리할 수 있음을 확인할 수 있었다. 센서데이터를 갖는 메시지를 처리하기 위한 성능을 개선하기 위해 본 시스템은 클라우드 하부구조의 에지단에 배치되어 사용한다.

Development of the Design Methodology for Large-scale Data Warehouse based on MongoDB

  • Lee, Junho;Joo, Kyungsoo
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권3호
    • /
    • pp.49-54
    • /
    • 2018
  • A data warehouse is a system that collectively manages and integrates data of a company. And provides the basis for decision making for management strategy. Nowadays, analysis data volumes are reaching critical size challenging traditional data ware housing approaches. Current implemented solutions are mainly based on relational database that are no longer adapted to these data volume. NoSQL solutions allow us to consider new approaches for data warehousing, especially from the multidimensional data management point of view. In this paper, we extend the data warehouse design methodology based on relational database using star schema, and have developed a consistent design methodology from information requirement analysis to data warehouse construction for large scale data warehouse construction based on MongoDB, one of NoSQL.

An Efficient Design and Implementation of an MdbULPS in a Cloud-Computing Environment

  • Kim, Myoungjin;Cui, Yun;Lee, Hanku
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권8호
    • /
    • pp.3182-3202
    • /
    • 2015
  • Flexibly expanding the storage capacity required to process a large amount of rapidly increasing unstructured log data is difficult in a conventional computing environment. In addition, implementing a log processing system providing features that categorize and analyze unstructured log data is extremely difficult. To overcome such limitations, we propose and design a MongoDB-based unstructured log processing system (MdbULPS) for collecting, categorizing, and analyzing log data generated from banks. The proposed system includes a Hadoop-based analysis module for reliable parallel-distributed processing of massive log data. Furthermore, because the Hadoop distributed file system (HDFS) stores data by generating replicas of collected log data in block units, the proposed system offers automatic system recovery against system failures and data loss. Finally, by establishing a distributed database using the NoSQL-based MongoDB, the proposed system provides methods of effectively processing unstructured log data. To evaluate the proposed system, we conducted three different performance tests on a local test bed including twelve nodes: comparing our system with a MySQL-based approach, comparing it with an Hbase-based approach, and changing the chunk size option. From the experiments, we found that our system showed better performance in processing unstructured log data.

음원 데이터베이스의 효율적 확장을 지원하는 내용 기반 음원 검색 시스템 (A Content-based Audio Retrieval System Supporting Efficient Expansion of Audio Database)

  • 박지훈;강현철
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권5호
    • /
    • pp.811-820
    • /
    • 2017
  • 음원 서비스의 주요 기능 중 하나인 내용 기반 검색을 위해 음원의 지문을 채취하여 데이타베이스에 저장하고 색인하여 검색에 활용하는 기법이 널리 사용되고 있다. 그런데 지속적으로 추가되는 신규 음원의 지문이 기존의 데이타베이스에 계속 삽입되면 공간 효율 및 음원 검색 성능의 저하가 점차 초래되는 문제점이 있다. 따라서 시스템 운용 비용의 증가를 가져오는 주기적인 데이터 베이스 재구성 없이 효율적인 음원 데이타베이스의 확장을 지원하는 기법이 요구된다. 본 논문에서는 샤잠의 지문 채취 알고리즘을 기반으로 클러스터 컴퓨팅 환경에서 맵리듀스 및 NoSQL 데이타베이스를 사용하여 이러한 문제를 해결하는 내용 기반 음원 검색 시스템의 설계를 제시하고 실제 음원 데이터를 이용한 다양한 실험을 통해 그 성능을 평가한다.