
택시 데이터에 한 효율 인 Top-K 빈도 검색 347

Finding Frequent Route of Taxi Trip Events Based on MapReduce and

MongoDB

Fadhilah Kurnia Putri†⋅Seonga An†⋅Magdalena Trie Purnaningtyas††⋅Han-You Jeong†††⋅Joonho Kwon††††

ABSTRACT

Due to the rapid development of IoT(Internet of Things) technology, traditional taxis are connected through dispatchers and location

systems. Typically, modern taxis have embedded with GPS(Global Positioning System), which aims for obtaining the route information. By

analyzing the frequency of taxi trip events, we can find the frequent route for a given query time. However, a scalability problem would

occur when we convert the raw location data of taxi trip events into the analyzed frequency information due to the volume of location

data. For this problem, we propose a NoSQL based top-K query system for taxi trip events. First, we analyze raw taxi trip events and

extract frequencies of all routes. Then, we store the frequency information into hash-based index structure of MongoDB which is a

document-oriented NoSQL database. Efficient top-K query processing for frequent route is done with the top of the MongoDB. We

validate the efficiency of our algorithms by using real taxi trip events of New York City.

Keywords : Taxi Trip Data, Top-K Frequent Query Processing, NoSQL Database, MapReduce, MongoDB

택시 데이터에 한 효율 인 Top-K 빈도 검색

Fadhilah Kurnia Putri†⋅안 성 아†⋅Magdalena Trie Purnaningtyas††⋅정 한 유†††⋅권 호††††

요 약

IoT(사물인터넷) 기술의 빠른 개발로 인하여 기존의 택시들은 디스패처와 치 시스템을 통해 서로 연결되고 있다. 일반 으로 의 택시

들은 경로 정보를 획득하기 한 목 으로 GPS(Global Positioning System)를 탑재하고 있다. 택시 운행 데이터들의 경로 빈도를 분석하여, 주

어진 질의 시간에 해당하는 빈번한 경로를 찾을 수 있다. 그러나 치 데이터의 용량이 매우 크고 복잡하기 때문에 택시의 운행 이벤트의 치

데이터를 분석된 빈도 정보로 변환할 때에 확장성 문제가 발생한다. 이 문제를 해결하기 하여, NoSQL 데이터베이스에 기반한 택시 운행 데

이터에 한 Top-K 질의 시스템을 제안한다. 첫째, 원시 택시 운행 이벤트를 분석하고 모든 경로들의 빈도 정보를 추출한다. 추출한 경로 정

보는 NoSQL 문서-지향 데이터베이스인 MongoDB에 해시 기반의 인덱스 구조로 장한다. 주로 발생하는 경로에 한 효율 인 Top-K 질의

처리는 몽고DB의 상에서 이루어진다. 미국 뉴욕시의 실제 택시 운행 데이터를 이용한 실험을 통하여 알고리즘의 효율성을 검증하 다.

키워드 : 택시 운행 데이터, Top-K 질의 처리, NoSQL 데이터베이스, MapReduce, MongoDB

KIPS Tr. Software and Data Eng.
Vol.4, No.9 pp.347~356 pISSN: 2287-5905

1. Introduction 1)

The transportation system is one of the fundamental

needs for people in many big cities since millions of

※ 이 논문은 2015년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받
아 수행된 기초연구사업임(NRF-2014R1A1A2055639).

††††비 회 원 : 부산대학교 빅데이터협동과정 석사과정
††††비 회 원 : 부산대학교 전기컴퓨터공학과 석사과정
††††비 회 원 : 부산대학교 전기공학과 교수
††††정 회 원 : 부산대학교 빅데이터협동과정 교수

Manuscript Received : July 28, 2015
First Revision : September 3, 2015
Accepted : September 3, 2015

* Corresponding Author : Joonho Kwon(jhkwon@pusan.ac.kr)

people move from one place to another day to day. In

these transportations, the taxi service has been an

important role due to its proximity, personalized service

and convenience to access anywhere. In the case of New

York City, metropolitan which we target in our study,

50,000 taxi drivers take charges of the 485,000 trips each

day, totaling 175 million trips per year in 2014[1].

Global Position System(GPS) devices, one of the widely

adopted IoT(Internet of Things) devices, already have

been equipped to most taxis to record the location of the

pickup, the location of the adropoff, and other states.

http://dx.doi.org/10.3745/KTSDE.2015.4.9.347

348 정보처리학회논문지/소 트웨어 데이터 공학 제4권 제9호(2015. 9)

Fig. 1. A MapReduce Framework

These positioning techniques allowed us to collect and

accumulate location data of the movement histories of taxi

trips. Various meaningful information could be extracted by

analyzing this data. For example, in [2], the researchers

try to convert urban taxi data into information with

insights into many different aspects of city life. To detect

hot spots in urban cities[3], other applications of traffic

managements trace and track the taxi trip events. In this

regard, we are also interested in finding frequent routes of

taxi trip events. This is done by designing a top-K query

processing system for taxi trip events.

We will face a scalability problem with a single

machine’s storage and local computation power due to the

huge volumes of taxi location data. For example, daily

GPS trace data of taxicab in a Chinese city is about

450GB for 6 months[4]. The MapReduce framework

becomes the de facto standard for distributed processing

of huge datasets. Thus, we will propose distributed

analytic algorithms executed across multiple machines.

Since extracting the frequent information needs to scan

all dataset, the MapReduce framework is suitable for this

process. However, it needs an efficient query processing

to provide answers for various user requests. Thus, we

propose to use a MongoDB database, a document-oriented

NoSQL database, is suitable for processing users’ requests.

In this paper, we propose a top-K query processing

system for handling taxi trip events. This system is a

combination of MapReduce and NoSQL database

technologies. We can extract the frequent routes by

analyzing taxi trip events and store them into a hash-like

index. We group trip events for each minute during the

MapReduce. A user requests his interest by specifying

the time and duration at the top of MongoDB. Then, he

can obtain the frequent routes corresponding to the query

time and duration.

The remainder of this paper will be organized as

follows : Section 2 presents related research work.

Section 3 explains the background of our study, the data

description and geographic assumption. In Section 4, we

present how to extract the frequent route information and

process the top-K query by combining MapReduce and

NoSQL technologies. We shall report the experiment

results in Section 5. Section 6 concludes the paper.

2. Related Work

2.1 Analyzing Taxi Trip Data

Many studies have been made for analyzing taxi

service based on the real-time/historical location data.

GPS is becoming available widely as one of IoT (Internet

of Things) devices. Hence, various research areas use

GPS generated data for analyzing the location. In [5],

authors used taxi GPS traces for urban land-use

classification, especially for recognizing the social features

of the region. Lee et al: analyze taxi location data in Jeju

Island, Republic of Korea to design a pick-up pattern

scheme of a taxi service[6]. They execute a k-means

clustering procedure to group the taxi location variables

and create its spatio-temporal pick-up frequency. A

MapReduce programming model[7] is applied for solving

traffic problems since the real GPS traffic data is a

large-scale dataset in nature.

2.2 MongoDB

The traditional relational database is widely used for

storing and querying structured data. Also, another kind of

technology is NoSQL database, which has standout scalability

and availability[8]. Recently, NoSQL databases get high.

There exists a study which attempts to use NoSQL database

to replace the relational database[9]. The authors try to

compare the two database system : (1) MySQL[10] as

RDBMS and (2) MongoDB[11] as NoSQL database. At this

work, the researchers enter 100,000 textbooks information

택시 데이터에 한 효율 인 Top-K 빈도 검색 349

Fig. 2. Taxi Trip Data View

Fig. 3. Cases of Taxi Trip Events

data into both database and check the cost time of MongoDB

and MySQL. The query of MySQL is executed by a join

operator which requires several tables. The query of

MongoDB is executed by reading a document table which

contains all necessary information. The query execution time

and data insertion time of MongoDB are faster than those of

MySQL. This work testifies the efficiency of MongoDB,

which we will use in our study. Dede et al: provides the

relative advantage and disadvantage of combining MongoDB

with Hadoop, the most popular implementation of

MapReduce[12].

2.3 MapReduce Framework

MapReduce is a programming model with a distributed

algorithm for processing large datasets[13]. As shown in

Fig. 1, MapReduce has two important phases : (1) a map

phase and (2) a reduce phase. The map and reduce

phases can be designed for any computation over users

input dataset and implemented as a mapper and a reducer

class. A key-value pair is a basic processing unit for an

input and an output of the MapReduce.

3. Preliminaries

3.1 Taxi Trip Data Description

The taxi trip data is based on a data set released under

the FOIL(The Freedom of Information Law) and made

public by Chris Whong[14]. This raw data reports the taxi

trip events based on geospatial data streams from New

York City. The total size of data is approximately 12GB for

the whole year 2013 containing about 173 million events.

Each event consists of 17 attributes including a location,

timestamps for pickup and drop off, payment information

and so on. For our research, we will use 5 attributes as

shown in Fig. 2 : dropoff-time, pickup-longitude, pickup-

latitude, dropoff-longitude and dropoff-latitude.

3.2 Definition of The Route

The problem we would like to challenge is the

identification of recent frequent routes. In other words,

the goal of our study is finding top-K frequent routes for

the given query time and duration. The query time

consists of end-time, last T minutes, and the number of

frequent routes (K). The start-time is automatically

computed as the time before T minutes from the

end-time.

Taxi trip events during T minutes could be categorized

into two cases as shown in Fig. 3 : (1) Case 1 : both

pickup-time and dropoff-time are within the interval

denoted as [start-time, end-time]. (2) Case 2 : the

dropoff-time is before the end-time of the query,

however the pickup-time is before the start-time. (3)

Case 3 : the pickup time is after the start-time of the

query whereas the drop-off time is after the end-time. In

our study, we will consider the case 2 equally with case

1 regardless of pickup-time, since the case 1 is finished

before the end-time of the query. Unlike this the case 3

350 정보처리학회논문지/소 트웨어 데이터 공학 제4권 제9호(2015. 9)

Fig. 4. Definition of The Route

Fig. 5. System Architecture

is not in our consideration since the taxi trip is not

terminated until the end-time. In other words, if the

dropoff-time is in [start-time, end-time] of the query, we

consider this event is within the interval of taxi trip

events during T minutes.

For defining a route of a taxi trip, we first need the cell

identifiers of pickup/drop-off locations from coordinates.

We assigned coordinates of pickup/dropoff locations to grid

cells for New York City due to the length and complexity

of geospatial data. We assume that a simplified flat earth

for mapping coordinates. The number of the grid cell is

300*300 and the size of each cell is 500 by 500 meter. The

total size of the grid cell is the square, the length of one

side is 150KM. Each cell has an identifier of a pair (i, j)

where i and j represents the row number and column

number respectively. The left top of initial cell, which of

identifier is (1, 1), is located at (41.46691978, -74.911343) in

geographic coordinates, longitude and latitude[15]. The

identifier for the cell grid increase towards the east and

south bound. The shift to east could be an increment in

i, and the shift to south could be an increment in j. Due

to the flat earth assumption, the i and j value of an

identifier pair will be increased/decreased as 1 when

0.005986 degrees in longitude and 0.004491556 degrees in

latitude is occurred respectively. In this regard, we map

coordinates to grid cells for New York City, we can

compute the identifier for coordinates.

Then, we define the route of a taxi trip event as the

pair of identifiers of pickup position and drop-off position

as illustrated in Fig. 4. If there is an event which of the

pickup or drop-off locations is out of grid cell range, we

will treat this event as an outlier and removed from the

results.

Let us consider an example route. Assume that we

obtain a coordinate (40.756817, -73.982841) as a pickup-

position. This coordinate that has corresponds the cell

having identifiers (158, 157). If we have a drop-off

position coordinate such as (40.756248, -73.967934), then

the cell identifiers will be (157, 158). Thus, the route of

this taxi trip event could be represented as (155, 158)-

(157, 158).

4. The Proposed System

In this section, we shall describe the architecture of

the proposed system and distributed approaches for

finding top-K frequent routes.

4.1 Overall Architecture

Fig. 5 shows the overall system architecture. We use

two phases for obtaining top-K frequent routes from taxi

trip events. The pre-processing phase groups taxi trip

events for each minute based on MapReduce algorithms.

The output of MapReduce algorithms is a hash-based

index structure and stored into a MongoDB document

store. At the query processing phase, a user submit his

interest to the system by specifying parameters and

obtains the top-K frequents routes.

For implementing a distributed top-K query system, there

might be two strategies. The first approach is to implement

all algorithms using only the MapReduce framework. The

result of this approach is all outputs for top-K frequent route

with range time T. One of the limitations of this approach is

too much duplicate data generated by map/reduce functions

as shown in Fig. 6. For example, a user wants to get top-10

frequent routes during 10 minutes from any specified time.

The map function duplicates all input data several times

택시 데이터에 한 효율 인 Top-K 빈도 검색 351

Fig. 6. Duplicate Data

Fig. 7. Data Structure

which corresponds to the range of 10 minutes interval. Since the

taxi trip data in one minute can be included several time ranges,

the same data can be copied T times. The reduce function

aggregates the duplicated data for the same query time.

Another disadvantage is that we need to implement

map/reduce functions for all user queries. User can

request different time ranges T and/or the number of

frequent routes K. We need to implement map/reduce

functions for all ad-hoc queries. However, this is very

hard and not feasible in the MapReduce framework.

The second approach, which we adopt in this paper, is

to use the MapReduce for the pre-processing step and

the MongoDB document store for the query step. This

approach overcomes the drawbacks of the previous one.

The advantage using this approach is we only need to

run MapReduce once for generating hash-based index

structures to group taxi trip events by unit time. This

output of MapReduce would be stored into MongoDB.

The MongoDB will work for the query processing. Users

request queries with various parameters in fast time with

efficiency of MongoDB.

4.2 Data Structure

We will maintain a hash-based index structure for

retrieving top-K frequent routes efficiently. The unit time

(one minute interval) is hashed in the index. Each hash

bucket maintains a list of (route, frequent) pairs. A pair

of (pickup cell id, drop-off cell id) represents the route as

explained before. How to use this index is described

when we explain the query processing step.

4.3 The Pre-processing Step

We will process taxi trip data with the MapReduce

framework due to the huge volume of the data. The map

phase takes the taxi trip events in New York City for

the whole year 2013 and generates key-value pairs where

the key is a unit time meaning for dropoff-time and the

value would be the whole route for the unit time. For

easier computation of the frequent route, we store the

frequency counter to the route information.

Algorithm 1 describes the map function. Each line of

the input document d has 17 attributes; however we deal

with only 5 attributes: dropoff-time, pickup-longitude,

pickup-latitude, dropoff-longitude, dropoff-latitude. After

read a line, we initialize pp as pickup position and dp as

drop-off position. The position consists of values of

longitude and latitude. We will generate a triple tr which

consists of dropoff-dt dt, pp, dp from the input event

line. The dt is dropoff-time of the event. Then, we obtain

the route r by getting the grid cell identifiers for

pickup/drop-off locations. We round up the time dt to the

nearest minutes for grouping each event to one minute

unit time. Finally, the key of the output becomes

dropoff-dt dt which is rounded up and the value of

output becomes a pair of route r and 1 as frequency.

352 정보처리학회논문지/소 트웨어 데이터 공학 제4권 제9호(2015. 9)

Fig. 8. Query Processing Flow

Algorithm 2 explains the reduce function which takes

the ordered and grouped data. We initialize a hashmap hm

whose key is the route and the value is the frequency of

that. The elements of hm is the aggregation of the

frequency for each route. After aggregation, we emit a pair

(dt, hm) as final output of the pre-processing step.

4.4 The query processing step

The top-K frequent query processing is explained in

Algorithm 3. A user query includes three parameters : (1)

an end time Q (2) a number of frequent routes K (3) a

duration T. The start time st of the query is

automatically calculated extract T minutes from Q. Then,

MongoDB searches the hash-based index is done by

using start time and end time. Each bucket of index

contains the list of pairs. When we find the pair, we

insert it into the candidate priority queue. The queue

automatically maintains K elements. Finally, the elements

of the queue are returned to the user.

Fig. 8 shows an example of the query processing.

First, a user specifies three parameters Q as “2013-04-14

04:56:00”, K as 10 and T as 5 minutes to the query

processor for obtaining top-K frequent routes (①) Then,

the start time of this query automatically computed as

“2013-04-14 04:52:00”, before 5 minutes from Q (②).

Next, MongoDB finds the index with the range of start

time and end time (③) and gets the list of route

택시 데이터에 한 효율 인 Top-K 빈도 검색 353

 (A) Varying the Nodes (B) Varying Data Size

Fig. 9. Extracting the Frequent Routes

frequency from selected index (④). The list has the route

and frequency of each route in index. The lists are

aggregated as candidate queue of frequent route (⑤). The

query processor gets results from the candidate priority

queue and returns Top-10 frequent route during last 5

minutes from 2013-04-14 04:56:00 to the users (⑥), (⑦).

As an exceptional case, a user specified the query time

as non-rush hour time such as midnight. In this case, the

total number of frequent routes is less than the value of

K. We decide to add “NULL” to the last frequent route if

the number of frequent is less than “K”.

5. Experimental Evaluation

In this section, we will present an experimental evaluation

of the performance of the proposed system. Experimental

results with real world datasets of New York City

demonstrate the feasibility and efficiency of our system.

5.1 Experimental Setup

The experiments are conducted on the top of a Hadoop

cluster which consists of 5 machines : one master node and

four slave nodes. Each machine runs a 64-bit Ubuntu 12.04

as their operating system, equipped with Intel Core 2 Quad

CPU @2.66Ghz, 2 GB Memory. The analysis algorithm is

implemented in Hadoop 1.2.1 using JAVA version 1.7 and

the query processing is implemented in MongoDB 2.6.10[1].

We used the 2013 data of New York City’s taxi trip data

from FOIL[14]. The size of each month and total size is

about 1 GB and 12GB respectively.

Our target query is finding the top-K frequent routes

during the last T minutes. Thus, a user query includes two

parameters : K and T. The value of K corresponds the

number of routes which will be returned to the user and the

value of T means the duration from the given query time to

search the routes. We randomly choose 10 the dates for the

queries 10 and execute them for the experiment. The

reported execution time is the average value.

5.2 Experimental Results

 In this subsection, we describe the experimental

results of our system which is a combination of a

MapReduce framework and MongoDB NoSQL database.

The experiments are conducted in two steps : a pre-

processing step and a query processing step.

1) Pre-Processing Phase : In this experiment, we

measured the execution time for pre-processing phase,

which extracts frequent routes information from raw taxi

trip events.

Since our approach is implemented in a distributed

way, we first fixed the size of data to 12 months and

varied the number of nodes. Fig. 9(A) shows the result.

As expected, we observe that the distributed approach in

multiple nodes can achieve a scalable ability to handle

huge volumes of data efficiently. The running time of 5

nodes is almost half of that of 2 nodes.

Next, we fixed the number of node to 4 and varied the

data size by increasing months in steps of 3 months. As

shown in Fig. 9(B), the execution time increased with the

data size. The months of data related with the size of

data and are one of key factors for performance.

354 정보처리학회논문지/소 트웨어 데이터 공학 제4권 제9호(2015. 9)

(A) small K < 100 (B) large K > 100

Fig. 10. Query Processing Time by Varying K

Fig. 11. Query Processing Time by Varying T Fig. 12. Distributed Query Processing Time

2) Query Processing Phase : In this experiment, we

validate the performance of top-K query processing for

computing frequent routes. And we want to compare with

the query execution time of rush hour and non-rush hour in

New York City. Generally the rush hour is corresponding

to 6-10 AM and 4-8 PM[16]. The remaining times of

date could be regarded as a non-rush hour.

a) Varying K : We measured the execution time by

varying the number of frequent routes denoted by K. We

fixed the range of query time as last 30 minutes. The

experimental result is an average running time of 10

query times. Fig. 10(A) shows the results when the

values of K varied from 20, 30, 40, 50, 60. First, we

observed that the query is executed quickly. Another

observation is that the execution time very slightly

increased with the values of K. This is mainly due to the

efficiency of the hash-based index structure. Also, we

observed the execution time of the rush hour is more

than non-rush hour.

b) Last T Minutes : In this experiment, we measure

the execution time by varying the length of duration

specified by T minutes. We fixed the value of K to 30,

randomly chose a query time 10 times and compute the

average running time. The duration T varied from 30 to

150 in steps of 30. Fig. 11 shows the result. As expected,

the execution time linearly increased with the value of T

since we need to check more hash buckets for computing

frequent routes.

c) Distributed query processing : In this experiment,

we also measure the execution time by varying the

number of nodes to see the effects of the number of

nodes. We created 2, 3, and 4 nodes for sharding clusters

of MongoDB and set the value of K to 100 and the

duration is 60 minutes. The hash-based index is

택시 데이터에 한 효율 인 Top-K 빈도 검색 355

separated based on drop-off time. Fig. 8 shows the result

of experiment. Due to the efficiency of the hash-based

index, the running time does not have much correlation

with the number of nodes.

6. Conclusion

In this paper, we designed and implemented a top-K

query processing system for IoT generated taxi trip

events. We adapt the MapReduce for extracting frequent

routes from raw taxi trip data and the MongoDB NoSQL

database for processing top-K queries. Experimental

results show that our system supports the top-K queries

efficiently with real taxi data of New York City. We

believe that the proposed system could also track a large

number of vehicles in modern urban areas due to its

distributed processing.

References

[1] 2014 Taxicab Fact Book [Internet], http://www.nyc.gov/html/

tlc/html/about/about.shtml/, 2014.

[2] N. Ferreira, J. Poco, H. T. Vo, J. Freire, and C. T. Silva, “Visual

exploration of big spatio-temporal urban data: A study of new

york city taxi trips,” Visualization and Computer Graphics,

IEEE Transactions on, Vol.19, No.12, pp.2149-2158, 2013.

[3] Z. Gui, H. Yu, and Y. Tang, “Locating traffic hot routes from

massive taxi tracks in clusters,” 2014.

[4] D. Zhang, T. He, S. Lin, S. Munir, J. Stankovic, et al., “Dmodel:

Online taxicab demand model from big sensor data in a roving

sensor network,” in Big Data (BigData Congress), 2014

IEEE International Congress on, IEEE, pp.152-159, 2014.

[5] G. Pan, G. Qi, Z. Wu, D. Zhang, and S. Li, “Land-use

classification using taxi gps traces,” Intelligent Transportation

Systems, IEEE, 2013.

[6] J. Lee, I. Shin, and G.-L. Park, “Analysis of the passenger

pick-up pattern for taxi location recommendation,” in

Networked Computing and Advanced Information Management,

2008. NCM’08. Fourth International Conference on, Vol.1.

IEEE, pp.199-204, 2008.

[7] Y. Wang, P. Chen, L. Cheng, and H. Tong, “A solution of

traffic problems based on mapreduce,” in Proceedings of the

International Conference on Information Engineering and

Applications (IEA) 2012. Springer, pp.749-757, 2013.

[8] NoSQL [Internet], http://nosql-database.org/, 2015.

[9] Z. Wei-ping, L. Ming-Xin, and C. Huan, “Using MongoDB

to implement textbook management system instead of

MySQL,” in Communication Software and Networks

(ICCSN), 2011. IEEE 3rd International Conference on, IEEE,

pp.303-305, 2011.

[10] ORACLE, MySQL [Internet], https://www.mysql.com/, 2015.

[11] MongoDB [Internet], https://www.mongodb.com/, 2015.

[12] E. Dede, M. Govindaraju, D. Gunter, R. S. Canon, and L.

Ramakrishnan, “Performance evaluation of a mongodb and

hadoop platform for scientific data analysis,” in Proceedings

of the 4th ACM workshop on Scientific cloud computing,

ACM, pp.13-20, 2013.

[13] J. Dean and S. Ghemawat, “Mapreduce: simplified data

processing on large clusters,” Communications of ACM, Vol.

51, No.1, pp.107-113, Jan., 2008.

[14] Chris Whong, FOILing NYC’s Taxi Trip Data [Internet],

http://chriswhong.com/open-data/foil nyc taxi/, 2014.

[15] DEBS2015, grid cell in New York City [Internet], http://

www.debs2015.org/call-grand-challenge.html/, 2015.

[16] Rush Hour [Internet], https://en.wikipedia.org/wiki/Rush

hour/, 2015.

Fadhilah Kurnia Putri

e-mail : fadhilahkp@pusan.ac.kr

2014년 인도네시아 ITS 학 산학(학사)

2015년～ 재 부산 학교 빅데이터 동

과정 석사과정

심분야 :빅데이터 처리 분석,

NoSQL 데이터베이스,

머신러닝

안 성 아

e-mail : saan@pusan.ac.kr

2014년 부경 학교 통계학(학사)

2014년～ 재 부산 학교 빅데이터 동

과정 석사과정

심분야 :빅데이터 처리 분석,

NoSQL 데이터베이스

Magdalena Trie Purnaningtyas

e-mail : magdalena.trie@gmail.com

2014년 인도네시아 Brawijaya 학

정보공학(학사)

2015년～ 재 부산 학교 기컴퓨터공학과

석사과정

심분야 :무선 자동차 통신망

356 정보처리학회논문지/소 트웨어 데이터 공학 제4권 제9호(2015. 9)

정 한 유

e-mail : hyjeong@pusan.ac.kr

2005년 서울 학교 기컴퓨터공학부(박사)

2005년～2007년 삼성 자 정보통신총

책임연구원

2007년～2008년 미네소타 학교

디지털연구소 박사후연구원

2008년～2014년 부산 학교 차세 물류IT기술연구사업단 교수

2014년～ 재 부산 학교 기공학과 교수

심분야 :무선 자동차 통신망

권 호

e-mail : jhkwon@pusan.ac.kr

2009년 서울 학교 기컴퓨공학부(박사)

2009년～2010년 차세 융합기술연구원

선임연구원

2010년～ 재 부산 학교 빅데이터

동과정 교수

심분야 :빅데이터 처리 분석, 그래 데이터베이스, XML

문서 필터링 인덱싱, IoT 데이터 장 리

