
택시 데이터에 한 효율 인 Top-K 빈도 검색   347

Finding Frequent Route of Taxi Trip Events Based on MapReduce and 

MongoDB

Fadhilah Kurnia Putri†⋅Seonga An†⋅Magdalena Trie Purnaningtyas††⋅Han-You Jeong†††⋅Joonho Kwon††††

ABSTRACT

Due to the rapid development of IoT(Internet of Things) technology, traditional taxis are connected through dispatchers and location 

systems. Typically, modern taxis have embedded with GPS(Global Positioning System), which aims for obtaining the route information. By 

analyzing the frequency of taxi trip events, we can find the frequent route for a given query time. However, a scalability problem would 

occur when we convert the raw location data of taxi trip events into the analyzed frequency information due to the volume of location 

data. For this problem, we propose a NoSQL based top-K query system for taxi trip events. First, we analyze raw taxi trip events and 

extract frequencies of all routes. Then, we store the frequency information into hash-based index structure of MongoDB which is a 

document-oriented NoSQL database. Efficient top-K query processing for frequent route is done with the top of the MongoDB. We 

validate the efficiency of our algorithms by using real taxi trip events of New York City.
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요     약

IoT(사물인터넷) 기술의 빠른 개발로 인하여 기존의 택시들은 디스패처와 치 시스템을 통해 서로 연결되고 있다. 일반 으로 의 택시

들은 경로 정보를 획득하기 한 목 으로 GPS(Global Positioning System)를 탑재하고 있다. 택시 운행 데이터들의 경로 빈도를 분석하여, 주

어진 질의 시간에 해당하는 빈번한 경로를 찾을 수 있다. 그러나 치 데이터의 용량이 매우 크고 복잡하기 때문에 택시의 운행 이벤트의 치 

데이터를 분석된 빈도 정보로 변환할 때에 확장성 문제가 발생한다. 이 문제를 해결하기 하여, NoSQL 데이터베이스에 기반한 택시 운행 데

이터에 한 Top-K 질의 시스템을 제안한다. 첫째, 원시 택시 운행 이벤트를 분석하고 모든 경로들의 빈도 정보를 추출한다. 추출한 경로 정

보는 NoSQL 문서-지향 데이터베이스인 MongoDB에 해시 기반의 인덱스 구조로 장한다. 주로 발생하는 경로에 한 효율 인 Top-K 질의 

처리는 몽고DB의 상에서 이루어진다. 미국 뉴욕시의 실제 택시 운행 데이터를 이용한 실험을 통하여 알고리즘의 효율성을 검증하 다.

키워드 : 택시 운행 데이터, Top-K 질의 처리, NoSQL 데이터베이스, MapReduce, MongoDB
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1. Introduction    1)

The transportation system is one of the fundamental 

needs for people in many big cities since millions of 
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people move from one place to another day to day. In 

these transportations, the taxi service has been an 

important role due to its proximity, personalized service 

and convenience to access anywhere. In the case of New 

York City, metropolitan which we target in our study, 

50,000 taxi drivers take charges of the 485,000 trips each 

day, totaling 175 million trips per year in 2014[1].

Global Position System(GPS) devices, one of the widely 

adopted IoT(Internet of Things) devices, already have 

been equipped to most taxis to record the location of the 

pickup, the location of the adropoff, and other states. 

http://dx.doi.org/10.3745/KTSDE.2015.4.9.347
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Fig. 1. A MapReduce Framework

These positioning techniques allowed us to collect and 

accumulate location data of the movement histories of taxi 

trips. Various meaningful information could be extracted by 

analyzing this data. For example, in [2], the researchers 

try to convert urban taxi data into information with 

insights into many different aspects of city life. To detect 

hot spots in urban cities[3], other applications of traffic 

managements trace and track the taxi trip events. In this 

regard, we are also interested in finding frequent routes of 

taxi trip events. This is done by designing a top-K query 

processing system for taxi trip events.

We will face a scalability problem with a single 

machine’s storage and local computation power due to the 

huge volumes of taxi location data. For example, daily 

GPS trace data of taxicab in a Chinese city is about 

450GB for 6 months[4]. The MapReduce framework 

becomes the de facto standard for distributed processing 

of huge datasets. Thus, we will propose distributed 

analytic algorithms executed across multiple machines.

Since extracting the frequent information needs to scan 

all dataset, the MapReduce framework is suitable for this 

process. However, it needs an efficient query processing 

to provide answers for various user requests. Thus, we 

propose to use a MongoDB database, a document-oriented 

NoSQL database, is suitable for processing users’ requests.

In this paper, we propose a top-K query processing 

system for handling taxi trip events. This system is a 

combination of MapReduce and NoSQL database 

technologies. We can extract the frequent routes by 

analyzing taxi trip events and store them into a hash-like 

index. We group trip events for each minute during the 

MapReduce. A user requests his interest by specifying 

the time and duration at the top of MongoDB. Then, he 

can obtain the frequent routes corresponding to the query 

time and duration.

The remainder of this paper will be organized as 

follows : Section 2 presents related research work. 

Section 3 explains the background of our study, the data 

description and geographic assumption. In Section 4, we 

present how to extract the frequent route information and 

process the top-K query by combining MapReduce and 

NoSQL technologies. We shall report the experiment 

results in Section 5. Section 6 concludes the paper.

2. Related Work

2.1 Analyzing Taxi Trip Data

Many studies have been made for analyzing taxi 

service based on the real-time/historical location data. 

GPS is becoming available widely as one of IoT (Internet 

of Things) devices. Hence, various research areas use 

GPS generated data for analyzing the location. In [5], 

authors used taxi GPS traces for urban land-use 

classification, especially for recognizing the social features 

of the region. Lee et al: analyze taxi location data in Jeju 

Island, Republic of Korea to design a pick-up pattern 

scheme of a taxi service[6]. They execute a k-means 

clustering procedure to group the taxi location variables 

and create its spatio-temporal pick-up frequency. A 

MapReduce programming model[7] is applied for solving 

traffic problems since the real GPS traffic data is a 

large-scale dataset in nature.

2.2 MongoDB

The traditional relational database is widely used for 

storing and querying structured data. Also, another kind of 

technology is NoSQL database, which has standout scalability 

and availability[8]. Recently, NoSQL databases get high. 

There exists a study which attempts to use NoSQL database 

to replace the relational database[9]. The authors try to 

compare the two database system : (1) MySQL[10] as 

RDBMS and (2) MongoDB[11] as NoSQL database. At this 

work, the researchers enter 100,000 textbooks information 



택시 데이터에 한 효율 인 Top-K 빈도 검색   349

Fig. 2. Taxi Trip Data View

Fig. 3. Cases of Taxi Trip Events

data into both database and check the cost time of MongoDB 

and MySQL. The query of MySQL is executed by a join 

operator which requires several tables. The query of 

MongoDB is executed by reading a document table which 

contains all necessary information. The query execution time 

and data insertion time of MongoDB are faster than those of 

MySQL. This work testifies the efficiency of MongoDB, 

which we will use in our study. Dede et al: provides the 

relative advantage and disadvantage of combining MongoDB 

with Hadoop, the most popular implementation of 

MapReduce[12]. 

2.3 MapReduce Framework

MapReduce is a programming model with a distributed 

algorithm for processing large datasets[13]. As shown in 

Fig. 1, MapReduce has two important phases : (1) a map 

phase and (2) a reduce phase. The map and reduce 

phases can be designed for any computation over users 

input dataset and implemented as a mapper and a reducer 

class. A key-value pair is a basic processing unit for an 

input and an output of the MapReduce.

3. Preliminaries 

3.1 Taxi Trip Data Description

The taxi trip data is based on a data set released under 

the FOIL(The Freedom of Information Law) and made 

public by Chris Whong[14]. This raw data reports the taxi 

trip events based on geospatial data streams from New 

York City. The total size of data is approximately 12GB for 

the whole year 2013 containing about 173 million events. 

Each event consists of 17 attributes including a location, 

timestamps for pickup and drop off, payment information 

and so on. For our research, we will use 5 attributes as 

shown in Fig. 2 : dropoff-time, pickup-longitude, pickup- 

latitude, dropoff-longitude and dropoff-latitude.

3.2 Definition of The Route

The problem we would like to challenge is the 

identification of recent frequent routes. In other words, 

the goal of our study is finding top-K frequent routes for 

the given query time and duration. The query time 

consists of end-time, last T minutes, and the number of 

frequent routes (K). The start-time is automatically 

computed as the time before T minutes from the 

end-time.

Taxi trip events during T minutes could be categorized 

into two cases as shown in Fig. 3 : (1) Case 1 : both 

pickup-time and dropoff-time are within the interval 

denoted as [start-time, end-time]. (2) Case 2 : the 

dropoff-time is before the end-time of the query, 

however the pickup-time is before the start-time. (3) 

Case 3 : the pickup time is after the start-time of the 

query whereas the drop-off time is after the end-time. In 

our study, we will consider the case 2 equally with case 

1 regardless of pickup-time, since the case 1 is finished 

before the end-time of the query. Unlike this the case 3 
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Fig. 4. Definition of The Route

Fig. 5. System Architecture

is not in our consideration since the taxi trip is not 

terminated until the end-time. In other words, if the 

dropoff-time is in [start-time, end-time] of the query, we 

consider this event is within the interval of taxi trip 

events during T minutes.

For defining a route of a taxi trip, we first need the cell 

identifiers of pickup/drop-off locations from coordinates. 

We assigned coordinates of pickup/dropoff locations to grid 

cells for New York City due to the length and complexity 

of geospatial data. We assume that a simplified flat earth 

for mapping coordinates. The number of the grid cell is 

300*300 and the size of each cell is 500 by 500 meter. The 

total size of the grid cell is the square, the length of one 

side is 150KM. Each cell has an identifier of a pair (i, j) 

where i and j represents the row number and column 

number respectively. The left top of initial cell, which of 

identifier is (1, 1), is located at (41.46691978, -74.911343) in 

geographic coordinates, longitude and latitude[15]. The 

identifier for the cell grid increase towards the east and 

south bound. The shift to east could be an increment in 

i, and the shift to south could be an increment in j. Due 

to the flat earth assumption, the i and j value of an 

identifier pair will be increased/decreased as 1 when 

0.005986 degrees in longitude and 0.004491556 degrees in 

latitude is occurred respectively. In this regard, we map 

coordinates to grid cells for New York City, we can 

compute the identifier for coordinates.

Then, we define the route of a taxi trip event as the 

pair of identifiers of pickup position and drop-off position 

as illustrated in Fig. 4. If there is an event which of the 

pickup or drop-off locations is out of grid cell range, we 

will treat this event as an outlier and removed from the 

results.

Let us consider an example route. Assume that we 

obtain a coordinate (40.756817, -73.982841) as a pickup- 

position. This coordinate that has corresponds the cell 

having identifiers (158, 157). If we have a drop-off 

position coordinate such as (40.756248, -73.967934), then 

the cell identifiers will be (157, 158). Thus, the route of 

this taxi trip event could be represented as (155, 158)- 

(157, 158). 

4. The Proposed System

In this section, we shall describe the architecture of 

the proposed system and distributed approaches for 

finding top-K frequent routes.

4.1 Overall Architecture

Fig. 5 shows the overall system architecture. We use 

two phases for obtaining top-K frequent routes from taxi 

trip events. The pre-processing phase groups taxi trip 

events for each minute based on MapReduce algorithms. 

The output of MapReduce algorithms is a hash-based 

index structure and stored into a MongoDB document 

store. At the query processing phase, a user submit his 

interest to the system by specifying parameters and 

obtains the top-K frequents routes.

For implementing a distributed top-K query system, there 

might be two strategies. The first approach is to implement 

all algorithms using only the MapReduce framework. The 

result of this approach is all outputs for top-K frequent route 

with range time T. One of the limitations of this approach is 

too much duplicate data generated by map/reduce functions 

as shown in Fig. 6. For example, a user wants to get top-10 

frequent routes during 10 minutes from any specified time. 

The map function duplicates all input data several times 



택시 데이터에 한 효율 인 Top-K 빈도 검색   351

Fig. 6. Duplicate Data

Fig. 7. Data Structure

which corresponds to the range of 10 minutes interval. Since the 

taxi trip data in one minute can be included several time ranges, 

the same data can be copied T times. The reduce function 

aggregates the duplicated data for the same query time.

Another disadvantage is that we need to implement 

map/reduce functions for all user queries. User can 

request different time ranges T and/or the number of 

frequent routes K. We need to implement map/reduce 

functions for all ad-hoc queries. However, this is very 

hard and not feasible in the MapReduce framework.

The second approach, which we adopt in this paper, is 

to use the MapReduce for the pre-processing step and 

the MongoDB document store for the query step. This 

approach overcomes the drawbacks of the previous one. 

The advantage using this approach is we only need to 

run MapReduce once for generating hash-based index 

structures to group taxi trip events by unit time. This 

output of MapReduce would be stored into MongoDB. 

The MongoDB will work for the query processing. Users 

request queries with various parameters in fast time with 

efficiency of MongoDB.

4.2 Data Structure

We will maintain a hash-based index structure for 

retrieving top-K frequent routes efficiently. The unit time 

(one minute interval) is hashed in the index. Each hash 

bucket maintains a list of (route, frequent) pairs. A pair 

of (pickup cell id, drop-off cell id) represents the route as 

explained before. How to use this index is described 

when we explain the query processing step. 

4.3 The Pre-processing Step

We will process taxi trip data with the MapReduce 

framework due to the huge volume of the data. The map 

phase takes the taxi trip events in New York City for 

the whole year 2013 and generates key-value pairs where 

the key is a unit time meaning for dropoff-time and the 

value would be the whole route for the unit time. For 

easier computation of the frequent route, we store the 

frequency counter to the route information.

Algorithm 1 describes the map function. Each line of 

the input document d has 17 attributes; however we deal 

with only 5 attributes: dropoff-time, pickup-longitude, 

pickup-latitude, dropoff-longitude, dropoff-latitude. After 

read a line, we initialize pp as pickup position and dp as 

drop-off position. The position consists of values of 

longitude and latitude. We will generate a triple tr which 

consists of dropoff-dt dt, pp, dp from the input event 

line. The dt is dropoff-time of the event. Then, we obtain 

the route r by getting the grid cell identifiers for 

pickup/drop-off locations. We round up the time dt to the 

nearest minutes for grouping each event to one minute 

unit time. Finally, the key of the output becomes 

dropoff-dt dt which is rounded up and the value of 

output becomes a pair of route r and 1 as frequency.
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Fig. 8. Query Processing Flow

Algorithm 2 explains the reduce function which takes 

the ordered and grouped data. We initialize a hashmap hm 

whose key is the route and the value is the frequency of 

that. The elements of hm is the aggregation of the 

frequency for each route. After aggregation, we emit a pair 

(dt, hm) as final output of the pre-processing step.

4.4 The query processing step

The top-K frequent query processing is explained in 

Algorithm 3. A user query includes three parameters : (1) 

an end time Q (2) a number of frequent routes K (3) a 

duration T. The start time st of the query is 

automatically calculated extract T minutes from Q. Then, 

MongoDB searches the hash-based index is done by 

using start time and end time. Each bucket of index 

contains the list of pairs. When we find the pair, we 

insert it into the candidate priority queue. The queue 

automatically maintains K elements. Finally, the elements 

of the queue are returned to the user.

Fig. 8 shows an example of the query processing. 

First, a user specifies three parameters Q as “2013-04-14 

04:56:00”, K as 10 and T as 5 minutes to the query 

processor for obtaining top-K frequent routes (①) Then, 

the start time of this query automatically computed as 

“2013-04-14 04:52:00”, before 5 minutes from Q (②). 

Next, MongoDB finds the index with the range of start 

time and end time (③) and gets the list of route 
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                   (A) Varying the Nodes                                  (B) Varying Data Size

Fig. 9. Extracting the Frequent Routes

frequency from selected index (④). The list has the route 

and frequency of each route in index. The lists are 

aggregated as candidate queue of frequent route (⑤). The 

query processor gets results from the candidate priority 

queue and returns Top-10 frequent route during last 5 

minutes from 2013-04-14 04:56:00 to the users (⑥), (⑦). 

As an exceptional case, a user specified the query time 

as non-rush hour time such as midnight. In this case, the 

total number of frequent routes is less than the value of 

K. We decide to add “NULL” to the last frequent route if 

the number of frequent is less than “K”.

5. Experimental Evaluation

In this section, we will present an experimental evaluation 

of the performance of the proposed system. Experimental 

results with real world datasets of New York City 

demonstrate the feasibility and efficiency of our system.

5.1 Experimental Setup

The experiments are conducted on the top of a Hadoop 

cluster which consists of 5 machines : one master node and 

four slave nodes. Each machine runs a 64-bit Ubuntu 12.04 

as their operating system, equipped with Intel Core 2 Quad 

CPU @2.66Ghz, 2 GB Memory. The analysis algorithm is 

implemented in Hadoop 1.2.1 using JAVA version 1.7 and 

the query processing is implemented in MongoDB 2.6.10[1]. 

We used the 2013 data of New York City’s taxi trip data 

from FOIL[14]. The size of each month and total size is 

about 1 GB and 12GB respectively.

Our target query is finding the top-K frequent routes 

during the last T minutes. Thus, a user query includes two 

parameters : K and T. The value of K corresponds the 

number of routes which will be returned to the user and the 

value of T means the duration from the given query time to 

search the routes. We randomly choose 10 the dates for the 

queries 10 and execute them for the experiment. The 

reported execution time is the average value.

5.2 Experimental Results

 In this subsection, we describe the experimental 

results of our system which is a combination of a 

MapReduce framework and MongoDB NoSQL database. 

The experiments are conducted in two steps : a pre- 

processing step and a query processing step.

1) Pre-Processing Phase : In this experiment, we 

measured the execution time for pre-processing phase, 

which extracts frequent routes information from raw taxi 

trip events.

Since our approach is implemented in a distributed 

way, we first fixed the size of data to 12 months and 

varied the number of nodes. Fig. 9(A) shows the result. 

As expected, we observe that the distributed approach in 

multiple nodes can achieve a scalable ability to handle 

huge volumes of data efficiently. The running time of 5 

nodes is almost half of that of 2 nodes.

Next, we fixed the number of node to 4 and varied the 

data size by increasing months in steps of 3 months. As 

shown in Fig. 9(B), the execution time increased with the 

data size. The months of data related with the size of 

data and are one of key factors for performance.
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(A) small K < 100                              (B) large K > 100

Fig. 10. Query Processing Time by Varying K

Fig. 11. Query Processing Time by Varying T Fig. 12. Distributed Query Processing Time

2) Query Processing Phase : In this experiment, we 

validate the performance of top-K query processing for 

computing frequent routes. And we want to compare with 

the query execution time of rush hour and non-rush hour in 

New York City. Generally the rush hour is corresponding 

to 6-10 AM and 4-8 PM[16]. The remaining times of 

date could be regarded as a non-rush hour.

a) Varying K : We measured the execution time by 

varying the number of frequent routes denoted by K. We 

fixed the range of query time as last 30 minutes. The 

experimental result is an average running time of 10 

query times. Fig. 10(A) shows the results when the 

values of K varied from 20, 30, 40, 50, 60. First, we 

observed that the query is executed quickly. Another 

observation is that the execution time very slightly 

increased with the values of K. This is mainly due to the 

efficiency of the hash-based index structure. Also, we 

observed the execution time of the rush hour is more 

than non-rush hour.

b) Last T Minutes : In this experiment, we measure 

the execution time by varying the length of duration 

specified by T minutes. We fixed the value of K to 30, 

randomly chose a query time 10 times and compute the 

average running time. The duration T varied from 30 to 

150 in steps of 30. Fig. 11 shows the result. As expected, 

the execution time linearly increased with the value of T 

since we need to check more hash buckets for computing 

frequent routes.

c) Distributed query processing : In this experiment, 

we also measure the execution time by varying the 

number of nodes to see the effects of the number of 

nodes. We created 2, 3, and 4 nodes for sharding clusters 

of MongoDB and set the value of K to 100 and the 

duration is 60 minutes. The hash-based index is 



택시 데이터에 한 효율 인 Top-K 빈도 검색   355

separated based on drop-off time. Fig. 8 shows the result 

of experiment. Due to the efficiency of the hash-based 

index, the running time does not have much correlation 

with the number of nodes.

6. Conclusion

In this paper, we designed and implemented a top-K  

query processing system for IoT generated taxi trip 

events. We adapt the MapReduce for extracting frequent 

routes from raw taxi trip data and the MongoDB NoSQL 

database for processing top-K queries. Experimental 

results show that our system supports the top-K queries 

efficiently with real taxi data of New York City. We 

believe that the proposed system could also track a large 

number of vehicles in modern urban areas due to its 

distributed processing.
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