• Title/Summary/Keyword: No-Fit-Polygon

Search Result 6, Processing Time 0.019 seconds

A Study on the Irregular Nesting Problem Using Genetic Algorithm and No Fit Polygon Methodology (유전 알고리즘과 No Fit Polygon법을 이용한 임의 형상 부재 최적배치 연구)

  • 유병항;김동준
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.77-82
    • /
    • 2004
  • The purpose of this study is to develop a nesting algorithm, using a genetic algorithm to optimize nesting order, and modified No Fit Polygon(NFP) methodology to place parts with the order generated from the previous genetic algorithm. Various genetic algorithm techniques, which have thus far been applied to the Travelling Salesman Problem, were tested. The partially mapped crossover method, the inversion method for mutation, the elitist strategy, and the linear scaling method of fitness value were selected to optimize the nesting order. A modified NFP methodology, with improved searching capability for non-convex polygon, was applied repeatedly to the placement of parts according to the order generated from previous genetic algorithm. Modified NFP, combined with the genetic algorithms that have been proven in TSP, were applied to the nesting problem. For two example cases, the combined nesting algorithm, proposed in this study, shows better results than that from previous studies.

Using Piecewise Circular Curves as a 2D Collision Primitive

  • Ollington, Robert
    • Asia-Pacific Journal of Business
    • /
    • v.9 no.2
    • /
    • pp.1-13
    • /
    • 2018
  • Physics simulation is an important part of many interactive 2D applications and collision detection and response is key component of this simulation. While methods for reducing the number of collision tests that need to be performed has been well researched, methods for performing the final checks with collision primitives have seen little recent development. This paper presents a new collision primitive, the n-arc, constructed from piecewise circular curves or biarcs. An algorithm for performing a collision check between these primitives is presented and compared to a convex polygon primitive. The n-arc is shown to exhibit similar, though slightly slower, performance to a polygon when no collision occurs, but is considerably faster when a collision does occur. The goodness of fit of the new primitive is also compared to a polygon. While the n-arc often gives a looser fit in terms of area, the continuous tangents of the n-arcs makes them a good choice for organic, soft or curved surfaces.

  • PDF

A Study and Implementation of the Heuristic Autonesting Algorithm in the 2 Dimension Space (2차원 공간에서의 휴리스틱 배치 알고리즘 및 구현에 관한 연구)

  • 양성모;임성국;고석호;김현정;한관희
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.3
    • /
    • pp.259-268
    • /
    • 1999
  • In order to reduce the cost of product and save the processing time, optimal nesting of two-dimensional part is an important application in number of industries like shipbuilding and garment making. There have been many studies on finding the optimal solution of two-dimensional nesting. The problem of two-dimensional nesting has a non-deterministic characteristic and there have been various attempts to solve the problem by reducing the size of problem rather than solving the problem as a whole. Heuristic method and linearlization are often used to find an optimal solution of the problem. In this paper, theoretical and practical nesting algorithm for rectangular, circular and irregular shape of two-dimensional parts is proposed. Both No-Fit-Polygon and Minkowski-Sum are used for solving the overlapping problem of two parts and the dynamic programming technique is used for reducing the number search spae in order to find an optimal solution. Also, nesting designer's expertise is complied into the proposed algorithm to supplement the heuristic method.

  • PDF

Optimal 3-D Packing using 2-D Slice Data for Multiple Parts Layout in Rapid Prototyping (신속시작작업에서 2차원 단면데이터를 이용한 3차원 물체의 최적자동배치를 위한 알고리즘의 개발)

  • 허정훈;이건우;안재홍
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.195-210
    • /
    • 1997
  • In Rapid Prototyping process, the time required to build multiple prototype parts can be reduced by packing several parts optimally in a work volume. Interactive arrangement of the multiple parts is a tedious process and does not guarantee the optimal placement of all the parts. In this case, packing is a kind of 3-D nesting problem because parts are represented by STL files with 3-D information. 3-D nesting is well known to be a problem requiring an intense computation and an efficient algorithm to solve the problem is still under investigation. This paper proposes that packing 3-D parts can be simplified into a 2-D irregular polygon nesting problem by using the characteristic of rapid prototyping process that the process uses 2-dimensional slicing data of the parts and that slice of the STL parts are composed of polygons. Our algorithm uses no-fit-polygon (NFP) to place each slice without overlapping other slices in the same z-level. The allowable position of one part at a fixed orientation for given parts already packed can be determined by obtaining the union of all NFP's that are obtained from each slice of the part. Genetic algorithm is used to determine the order of parts to be placed and orientations of each part for the optimal packing. Optimal orientation of a part is determined while rotating it about the axis normal to the slice by finite angles and flipping upside down. This algorithm can be applied to any rapid prototyping process that does not need support structures.

  • PDF

An Ambiguity-free Surface Construction from Volume Data (입체적인 데이터에서 애매성-프리 표면 재구성)

  • Lee, Ee-Taek;Oh, Kwang-Man;Park, Kyu Ho
    • Journal of the Korea Computer Graphics Society
    • /
    • v.4 no.1
    • /
    • pp.55-66
    • /
    • 1998
  • This paper presents a simple method for relieving the ambiguity problems within the sub-voxel based surface-fitting approach for the surface construction. ECB algorithm is proposed to avoid the ambiguity problem which is the root of the holes within the resulting polygon based approximation. The basic idea of our disambiguation strategy is the use of a set of predefined modeling primitives (we call SMP) which guarantees the topological consistency of resulted surface polygons. 20 SMPs are derived from the extension of the concept of the elementary modeling primitives in the CB algorithm [3], and fit one to five faces of them to the iso-surface crossing a cell with no further processing. A look-up table which has a surface triangle list is pre-calculated using these 20 SMPs. All of surface triangles in the table are from the faces of SMPs and are stored in the form of edge list on which vertices of each surface triangle are located. The resulted polygon based approximation is unique at every threshold value and its validity is guaranteed without considering the complicated problems such as average of density and postprocessing. ECB algorithm could be free from the need for the time consuming post-processing, which eliminates holes by revisiting every boundary cell. Through three experiments of surface construction from volume data, its capability of hole avoidance is showed.

  • PDF

Nesting Problem for Two Dimensional Irregular Shapes using Heuristic (휴리스틱을 이용한 2차원 임의형상 부재 배치 문제)

  • Jeong, Sung-Kyo;Jeon, Geon-Wook
    • IE interfaces
    • /
    • v.21 no.1
    • /
    • pp.8-17
    • /
    • 2008
  • A new search procedure, VLT(Vertex Line Tracing) heuristic, for two dimensional irregular shapes nesting problem was suggested in this study. The VLT heuristic was suggested to the nesting problem to overcome disadvantages of the existing NFP(No-Fit-Polygon) method. This VLT heuristic was compared with the results of the existing benchmark problems suggested by Albano, Hopper, and Burke. The results of the VLT heuristic give efficient solutions in the point of the scrap ratio and computation time. A computer program, NestLogic, using C++ for VLT heuristic was also developed for this nesting problem.