• 제목/요약/키워드: Nitrogen oxidizing

검색결과 92건 처리시간 0.022초

다양한 질소화합물에 대한 황산화미생물 바이오센서의 응답 특성 (Toxicity Response of Biosensor Using Sulfur-Oxidizing Bacteria to Various Nitrogenous Compounds)

  • 황지훈;강우창;신범수;채규정;오상은
    • 한국환경농학회지
    • /
    • 제33권4호
    • /
    • pp.314-320
    • /
    • 2014
  • BACKGROUND: Run off from agricultural sites contaminates water bodies with nitrogen which is toxic and causes eutrophication when excessively accumulated. Hence, the interest in monitoring nitrogen toxicity in aquatic environment has been continuously increasing. METHODS AND RESULTS: To detect a real time toxicity of various nitrogen compounds, we applied biomonitoring method (biosensor) based on sulfur-oxidizing bacteria (SOB). The toxicity biomonitoring test was conducted in semi-continuous mode in a reactor filled with sulfur particles (2~4 mm diameter) under aerobic condition. Relative toxicity was simply determined by measuring the change in electrical conductivity (EC). Various nitrogenous compounds at different concentrations were evaluated as a potential toxic substance. Nitrite was found to be very toxic to SOB with a 90% inhibition even when the concentration as low as 3 mg/L. However, nitrate and ammonia have any inhibitory effect on SOB's activity. CONCLUSION: The biosensor based on SOB responded sensitively to nitrite even at substantially low concentrations. Therefore, it can be used as a reliable biological alarm system for rapid detection of contaminants due to its simplicity and sensitive nature.

Rapid Detection of Ammonia-oxidizing Bacteria in Activated Sludge Based on 16S-rRNA Gene by Using PCR and Fluorometry

  • Hikuma, Motohiko;Nakajima, Masanori;Hirai, Toshiaki;Matsuoka, Hiroshi
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제7권5호
    • /
    • pp.323-326
    • /
    • 2002
  • To detect whole ammonia-oxidizing bacteria in the activated sludge, group-specific primers targeting the 16S-rRNA gene of ammonia-oxidizing bacteria were used. The electrophoresis pattern of the PCR products seemed to produce a single band of approximately 1.0 k bp for the bacteria in activated sludge and Nitrosomonas europaea. No band was observed for nitrite-oxidizer Nitrobacter winogradskyi and heterotrophs such as Pseudomonas putida. Then direct measurement of the PCR product was made by fluorometry using the reagent Hoechist 33258, so that the fluorescent intensity was in proportional to the cell number of the sample up to 240. Total time required for the test was about 4 h including DNA extraction. The DNA fragments produced were cloned and their sequences showed high similarity to those of Nitrosomonas spp. This study showed the feasibility to detect ammonia-oxidizing bacteria and to esti-mate their population rapidly for the control of the nitrogen elimination process.

A shell layer entrapping aerobic ammonia-oxidizing bacteria for autotrophic single-stage nitrogen removal

  • Bae, Hyokwan;Choi, Minkyu
    • Environmental Engineering Research
    • /
    • 제24권3호
    • /
    • pp.376-381
    • /
    • 2019
  • In this study, a poly(vinyl) alcohol/sodium alginate (PVA/SA) mixture was used to fabricate core-shell structured gel beads for autotrophic single-stage nitrogen removal (ASNR) using aerobic and anaerobic ammonia-oxidizing bacteria (AAOB and AnAOB, respectively). For stable ASNR process, the mechanical strength and oxygen penetration depth of the shell layer entrapping the AAOB are critical properties. The shell layer was constructed by an interfacial gelling reaction yielding thickness in the range of 2.01-3.63 mm, and a high PVA concentration of 12.5% resulted in the best mechanical strength of the shell layer. It was found that oxygen penetrated the shell layer at different depths depending on the PVA concentration, oxygen concentration in the bulk phase, and free ammonia concentration. The oxygen penetration depth was around $1,000{\mu}m$ when 8.0 mg/L dissolved oxygen was supplied from the bulk phase. This study reveals that the shell layer effectively protects the AnAOB from oxygen inhibition under the aerobic conditions because of the respiratory activity of the AAOB.

Fed-Batch 실험장치(實驗裝置)를 이용한 질산화(窒酸化) 미생물(微生物)들의 최대(最大) 성장율(成長率)의 결정(決定)에 관한 실험적(實驗的) 연구(硏究) (Rapid Determination of the Maximum Specific Growth Rates of Nitrogen Oxidizing Bacteria by Fed-Batch Experiments)

  • 이병희
    • 상하수도학회지
    • /
    • 제10권3호
    • /
    • pp.55-63
    • /
    • 1996
  • Nitrification reaction consists of two reactions: nitritification which oxidizes ammonia nitrogen to nitrite nitrogen and nitratification which oxidizes nitrite nitrogen to nitrate nitrogen. Each reaction is carried out by Nitrosomonas and Nitrobacter, respectively. The effective maximum growth rates for both bacteria have to be determined to design aeration tank whenever the aeration tanks have to nitrify ammonia nitrogen in influent. And these values are very important to use mathematical models such as IAWPRC model to simulate nitrification in activated sludge. There are several methods to determine these valves, however, the Fed-Batch experiments can determine these values within 72 hours. In this study, the mathematical equations and experimental procedures for Fed-Batch test are presented. Also, the experimental data and reported values are compared. The estimated mean values of maximum specific growth rates for Nitrosomonas and Nitrobacter are $0.5010day^{-1}$ and $0.6704day^{-1}$, respectively.

  • PDF

Biological Nitrogen Removal System의 세균 군집 분석 (Structure of Bacterial Communities in Biological Nitrogen Removal System)

  • 김경미;이상일;이동훈
    • 미생물학회지
    • /
    • 제42권1호
    • /
    • pp.26-33
    • /
    • 2006
  • 생물학적 질소 제거(Biological nitrogen removal; BNR) 시스템의 효율적인 처리 공정을 이재하기 위하여 질산화 반응조 내 세균 군집 구조를 16S rRNA 유전자의 PCR 및 terminal restriction fragment length polymorphism (T-RELP)방법을 이용하여 분석하였다. 본 연구에서 사용한 BNR 시스템은 국내에서 비교적 많이 적용되고 있는 부상여재를 이용한 고도처리 시스템, Nutrient Removal Laboratory 시스템, 반추기법을 이용한 영양염류 처리 Sequencing Batch Reactor (SBR)시스템이었고, 실험 결과 모든 시료에서 암모니아 산화 세균과 $\beta-proteobacteria$에 해당되는 말단 단편을 확인할 수 있었다. 암모니아 산화세균 군집에서 유래된 말단 단편의 염기서열을 분석한 결과 SBR공정에서는 Nitrosomonas와 Nitrosolobus에 속하는 군집 이 우점종임을 확인할 수 있었다. 그러나 다른 두 공정들에서는 $\beta-proteobacteria$에 속하는 미배양 균주와 Cardococcus australiensis와 염기서열 유사도가 높은 군집이 우점하였다. 또한, 암모니아산화 세균군집을 분석한 결과, SBR 공정이 암모니아 산화세균의 농화 배양에 가장 효과적인 것으로 나타났다. 이러한 결과는 각 BNR 시스템에 동일한 폐수가 유입되었음에도 불구하고 서로 다른 세균 군집 구조를 형성하고 있음을 의미한다.

Analysis of the Activated Sludge of a Municipal WWTP by Several Bio-Parameters

  • Cho Sun-Ja;Jung Yong-Ju;Park Tae-Joo;Lee Sang-Joon
    • 한국환경과학회지
    • /
    • 제14권9호
    • /
    • pp.811-815
    • /
    • 2005
  • The activated sludge from the aeration basin of the Su-yeong municipal wastewater treatment plant which has operated by a standard activated sludge process in Busan, Korea was investigated during April 2004 and January 2005 with several bio-indicators. The number of bacteria and fungi per gram of dry weight of MLSS were estimated to be $3.1\times10^6\sim1.5\times10^8\;and\;l.1\times10^3\sim1.1\times10^5$ colony forming units, respectively, by the plate agar method. By cultivation-independent methods, such as 4',6-diamidino-2-phenylindole stain and fluorescence in situ hybridization, the ratio of eubacteria to the entire biomass was evaluated by more than $80\%$ (v/v). The ratio of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria to the total eubacteria was detennined to be $7.0\sim9.8\%\;and\;3.3\sim6.2\%$ without heavy variation in spite of a period of relatively low temperature in the basin. It would be expected that the nitrification would occur or at least co-exist throughout the year in the sludge of many municipal WWTP with influents that contain the sufficient nitrogen sources although the WWTP does not have any specialized processes for the removal of nitrogen.

아나목스 농후배양에서 암모니아 산화균의 자생 특성 (Presence and Growth of Ammonia-oxidizing Bacteria in Anaerobic Ammonium Oxidation Enrichment)

  • 배효관;;정진영
    • 한국물환경학회지
    • /
    • 제36권3호
    • /
    • pp.220-228
    • /
    • 2020
  • Anaerobic ammonium oxidation (AMX) is a cost-efficient biological nitrogen removal process. The coexistence of ammonia-oxidizing bacteria (AOB) in an AMX reactor is an interesting research topic as a nitrogen-related bacterial consortium. In this study, a sequencing batch reactor for AMX (AMX-SBR) was operated with a conventional activated sludge. The AOB in an AMX bioreactor were identified and quantified using terminal restriction fragment length polymorphism (T-RFLP) and real-time qPCR. A T-RFLP assay based on the ammonia monooxygenase subunit A (amoA) gene sequences showed the presence of Nitrosomonas europaea-like AOB in the AMX-SBR. A phylogenetic tree based on the sequenced amoA gene showed that AOB were affiliated with the Nitrosomonas europaea/mobilis cluster. Throughout the enrichment period, the AOB population was stable with predominant Nitrosomonas europaea-like AOB. Two OTUs of amoA_SBR_JJY_20 (FJ577843) and amoA_SBR_JJY_9 (FJ577849) are similar to the clones from AMX-related environments. Real-time qPCR was used to quantify AOB populations over time. Interestingly, the exponential growth of AOB populations was observed during the substrate inhibition of the AMX bacteria. The specific growth rate of AOB under anaerobic conditions was only 0.111 d-1. The growth property of Nitrosomonas europaea-like AOB may provide fundamental information about the metabolic relationship between the AMX bacteria and AOB.

주공정에서 아질산화-혐기성 암모늄 산화법에 의한 단축질소제거공정 연구동향 (Main-stream Partial Nitritation - Anammox (PN/A) Processes for Energy-efficient Short-cut Nitrogen Removal)

  • 박홍근;유대환
    • 한국물환경학회지
    • /
    • 제34권1호
    • /
    • pp.96-108
    • /
    • 2018
  • Large efforts have recently been made on research and development of sustainable and energy-efficient short-cut nitrogen removal processes owing to strong attention to the energy neutral/positive wastewater treatment system. Anaerobic ammonium oxidizing bacteria (anammox bacteria) have been highlighted since 1990's due to their unique advantages including 60% less energy consumption, nearly 100% reduction for carbon source requirement, and 80% less sludge production. Side-stream short-cut nitrogen removal using anammox bacteria and partial nitritation anammox (PN/A) has been well established, whereas substantial challenges remain to be addressed mainly due to undesired main-stream conditions for anammox bacteria. These include low temperature, low concentrations of ammonia, nitrite, free ammonia, free nitrous acid or a combination of those. In addition, an anammox side-stream nitrogen management is insufficient to reduce overall energy consumption for energy-neutral or energy positive water resource recovery facility (WRRF) and at the same time to comply with nitrogen discharge regulation. This implies the development of the successful main-stream anammox based technology will accelerate a conversion of current wastewater treatment plants to sustainable water and energy recovery facility. This study discusses the status of the research, key mechanisms & interactions of the protagonists in the main-stream PN/A, and control parameters and major challenges in process development.

Study on the optimization of partial nitritation using air-lift granulation reactor for two stage partial nitritation/Anammox process

  • Jung, Minki;Oh, Taeseok;Jung, Kyungbong;Kim, Jaemin;Kim, Sungpyo
    • Membrane and Water Treatment
    • /
    • 제10권4호
    • /
    • pp.265-275
    • /
    • 2019
  • This study aimed to develop a compact partial nitritation step by forming granules with high Ammonia-Oxidizing Bacteria (AOB) fraction using the Air-lift Granulation Reactor (AGR) and to evaluate the feasibility of treating reject water with high ammonium content by combination with the Anammox process. The partial nitritation using AGR was achieved at high nitrogen loading rate ($2.25{\pm}0.05kg\;N\;m-3\;d^{-1}$). The important factors for successful partial nitritation at high nitrogen loading rate were relatively high pH (7.5~8), resulting in high free ammonia concentration ($1{\sim}10mg\;FA\;L^{-1}$) and highly enriched AOB granules accounting for 25% of the total bacteria population in the reactor. After the establishment of stable partial nitritation, an effluent $NO_2{^-}-N/NH_4{^+}-N$ ratio of $1.2{\pm}0.05$ was achieved, which was then fed into the Anammox reactor. A high nitrogen removal rate of $2.0k\; N\;m^{-3}\;d^{-1}$ was successfully achieved in the Anammox reactor. By controlling the nitrogen loading rate at the partial nitritation using AGR, the influent concentration ratio ($NO_2{^-}-N/NH_4{^+}-N=1.2{\pm}0.05$) required for the Anammox was controlled, thereby minimizing the inhibition effect of residual nitrite.