• Title/Summary/Keyword: Nitrogen fertilizer recommendation

Search Result 47, Processing Time 0.022 seconds

Use Efficiency of Nitrate Nitrogen Accumulated in Plastic Film House Soils under Continuous Vegetable Cultivation (시설재배(施設栽培) 토양(土壤)에 축적(蓄積)된 질산태질소(窒酸態窒素)의 유효도(有效度))

  • Song, Yo-Sung;Kwak, Han-Kang;Huh, Beom-Lyang;Lee, Sang-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.4
    • /
    • pp.347-352
    • /
    • 1996
  • These experiments were conducted to monitor the change in $NO_3{^-}-N$ in a plastic film house where $NO_3{^-}-N$ have been accumulated in the soil of high level (about 370 mg/kg) The objective of this study was to obtain the information needed to establish the N Fertilizer recommendation based on the available N content in the soil for vegetable cultivation. The cultivated crops were chinese cabbage in the spring, lettuce in the summer, and chinese cabbage in the autumn. The crops were cultivated with and without N application. The concentration of $NO_3{^-}-N$ in the soil was analysed before and after the cultivation of each crop. When $NO_3{^-}-N$ in the soil is as high as 370 mg/kg. even without N application, the yield of the first season crop, cabbage in the spring was 175 ton/ha and that of second season crop, lettuce in the summer was 53 ton/ha. These yields were comparable with those obtained under the application of N fertilizer: meaning that no N application would be needed for those crops when $NO_3{^-}-N$ in the soil is as high as 370 mg/kg. The yield of third crop, cabbage in the autumn was higher under N application than that under no N application by 62%. The fate of $NO_3{^-}-N$ in the soil differed along with the crop sequence. In the first crop, 14.5% was absorbed by crop, 25.4% remained in the soil and 60.1% was unaccounted for. In the second season, 25.3% was absorbed by crop, 51.8% remained in the soil and 22.9% was unaccounted for. In the third crop, 62.8% was absorbed by crop, 19.4% remained in the soil and 16.8% was unaccounted for.

  • PDF

Inorganic Nutrient Uptake Pattern of Vegetable Crops in Highland (고랭지 주요 채소작물의 무기성분 흡수 특성)

  • Lee, Jeong-Tae;Lee, Gye-Jun;Ryu, Jong-Soo;Zhang, Yong-Seon;Hwang, Seon-Woong;Park, Chol-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.616-623
    • /
    • 2010
  • Plant samples from 49 sites for Chinese cabbage, 28 sites for radish, 16 sites for cabbage, 8 sites for head lettuce, 20 sites for onion from farmers' and experimental fields in highland of Korea were collected and analyzed to find out the uptake patterns of nitrogen (N), phosphorus (P) and potassium (K) by altitude. Dry weight and uptake of N, P and K were increased at higher altitude in most vegetable crops. Nutrition uptake by Chinese cabbage was 163 ~ 283 kg $ha^{-1}$ for N, 42 ~ 69 kg $ha^{-1}$ for $P_2O_5$ and 146 ~ 270 kg $ha^{-1}$ for $K_2O$ according to altitude. Nutrient uptake by radish according to altitude was 153~159 kg $ha^{-1}$ for N, 38 ~ 46 kg $ha^{-1}$ for $P_2O_5$, and 151 ~ 185 kg $ha^{-1}$ for $K_2O$. In case of cabbage, the plant uptakes of N, P, and K were increased at altitudes of 600 ~ 1,000 m. Nutrient uptake of cabbage was 280 ~ 348 kg $ha^{-1}$ for N, 34 ~ 87 kg $ha^{-1}$ for $P_2O_5$, and 209 ~ 290 kg $ha^{-1}$ for $K_2O$ according to altitude. Uptakes of N-$P_2O_5-K_2O$ by head lettuce at an altitude of 800 ~ 850 m were 93-26-126 kg $ha^{-1}$, respectively. Uptakes of N-$P_2O_5-K_2O$ by onions at an altitude of 600 ~ 800 m were 313-140-234 kg $ha^{-1}$, respectively, but there was no tendency in nutrition uptake patterns by altitude. Small cultivation areas used for leaf vegetable crops do not have fertilizer recommendation standards in alpine regions. It might be preferable to use a correction factor equivalent to the index of available nutrient uptake for the determination of N, P and K fertilizer application rates.

Studies on the Soil Properties and Fertilizer Recommendation for Grass Lands to be Established (산지초지(山地草地) 조성대상지(造成對象地) 토양특성(土壤特性)과 시비추천(施肥推薦))

  • Lee, Hyub-Sung;Hur, Bong-Koo;Yoon, Kwan-Hee;Son, Eung-Ryong;Um, Ki-Tae;Noh, Dae-Chul;Kim, Young-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.4
    • /
    • pp.301-306
    • /
    • 1989
  • For the agricultural utilization of Korean forest land resources, which constitutes most of country, the distribution of environment and soil physico-chemical properties of establishable grass lands were clarified. The surveyed data were analized for the reasonable utilization and management of establishable grass land. The results were as follows ; 1. About 50.2% of the grass lands to be established were located under the 200m in altitude. The higher the altitude was, the more the organic matter content. 2. Tall type grass species such as Miscanthus purpurascens, Purple eulalia, and Themeda Japonica covered 71.3% of the natural vegetation in the soils of grass land to be established. 3. The extent of sandy and clayey soils which might be limited in the establishment of grassland was only 3.3%, meanwhile majority of the soils were in the favourable condition for grassland that is about 94% have more than 20cm in available soil depth and about 60.5% of the soils have less than 10% of gravels and stones in the soil profiles. 4. The chemical properties of the prearranged grassland soils were worse than the established grasslands, especially in the content of available $P_2O_5$. 5. The amount of fertilizer recommended for meadow were 286kg of nitrogen per hectare, 271kg of phosphorus, 224kg of potassium and 2040kg of calcium per hectare, but for grazing land were 201, 204, 136 and 1920kg/ha respectively.

  • PDF

Growth, Rice Yield and Edible Quality of Rice under Naturally Reseeded Chinese Milk Vetch Cropping System (자운영 지속재배시 벼 생육, 수량 및 미질)

  • Kim, Sang-Yeol;Oh, Seong-Hwan;Hwang, Woon-Ha;Choi, Kyung-Jin;Park, Sung-Tae;Kim, Jeong-Il;Yeo, Un-Sang;Kang, Hang-Won
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.4
    • /
    • pp.351-356
    • /
    • 2009
  • Growth, milled rice yield and edible quality of rice in naturally reseeded Chinese milk vetch(CMV)-rice cropping system was compared with those in rice mono cropping on silty loam soil in Milyang from 2006-2008. Practicing natural reseeding technology recorded high CMV reseeding stand ranging from 565-805 plants $m^{-2}$ and resulting in the production of 13.0-17.0 kg N/10a from the CMV plant biomass which is greater than the recommendation rate of 9 kgN/10a. The plant height of rice plant grown in natural reseeding field is shorter at tillering stage but it was similar to the rice mono cropping at later stage. Dry matter production had similar trend to plant height. On the other hand, the leaf color in naturally reseeded CMV-rice cropping system was similar to the rice mono cropping up to panicle heading stage but it was high at mature stage, indicating that the nitrogen was provided by the CMV decomposition until later stage of rice. The yield components such as culm number $m^{-2}$ was greater and 1,000-brown rice weight was heavier than those of rice mono cropping but the ripened grain ratio was lower in naturally reseeded CMV-rice cropping system. Milled rice yield of naturally reseeded CMV-rice cropping system was similar to that of rice mono cropping. However, head rice percentage of milled rice was lower due to low ripened grain ratio. This result indicates that natural CMV reseeding technology can completely replace chemical fertilizer in CMV-rice cropping system.

Effects of Crotalaria Incorporation into Soil as a Green Manure on Growth of Strawberry and Inorganic Soil Nitrogen Level (크로탈라리아의 토양환원이 토양의 무기태 질소농도 및 딸기의 생육에 미치는 영향)

  • Lim, Tae-Jun;Park, Jin-Myeon;Lee, Seong-Eun;Park, Young-Eun;Kim, Ki-In
    • Horticultural Science & Technology
    • /
    • v.34 no.4
    • /
    • pp.578-586
    • /
    • 2016
  • In this study, we evaluated the effects of soil incorporation of crotalaria as a green manure on the growth and yields of 'Seolhyang' strawberry and inorganic soil nitrogen levels in a greenhouse. Four different N treatments were used, as follows: zero N fertilizer (control), crotalaria, crotalaria with 50% urea, and 100% urea. The recommended N requirement (100% urea) for strawberry was $86kgN{\cdot}ha^{-1}$ and 50% of the recommended N (50% urea) was $43kgN{\cdot}ha^{-1}$. Crotalaria was sowed on June $17^{th}$, 2011 and cultivated for 37 days. The amount of N supply from soil incorporation of crotalaria was $104kgN{\cdot}ha^{-1}$. Strawberry was planted on September $9^{th}$, 2011 and cultivated for 255 days after planting. The concentrations of soluble solids and acidity of strawberry fruits for the crotalaria treatment were higher than for the crotalaria with 50% urea and 100% urea treatments. On the other hand, the growth and yield of strawberry was the highest for the crotalaria with 50% urea and 100% urea treatments, followed by the crotalaria treatment, and the lowest for the control. Soil inorganic N concentration for the crotalaria treatment was continuously decreased to $24mg{\cdot}kg^{-1}$ at the end of the growing season, while crotalaria with 50% urea and 100% urea treatments maintained an inorganic N concentration that ranged from 35 to $50mg{\cdot}kg^{-1}$. These results indicate that the amount of N supply from soil incorporation of crotalaria may not be enough because strawberry yield was lower than for other N treatments. Therefore, additional nitrogen, such as 50% urea after soil incorporation of crotalaria, is recommended.

Development and Preliminary Test of a Prototype Program to Recommend Nitrogen Topdressing Rate Using Color Digital Camera Image Analysis at Panicle Initiation Stage of Rice (디지털 카메라 칼라영상 분석을 이용한 벼 질소 수비량 추천 원시 프로그램의 개발과 예비 적용성 검토)

  • Chi, Jeong-Hyun;Lee, Jae-Hong;Choi, Byoung-Rourl;Han, Sang-Wook;Kim, Soon-Jae;Park, Kyeong-Yeol;Lee, Kyu-Jong;Lee, Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.4
    • /
    • pp.312-318
    • /
    • 2010
  • This study was carried out to develop and test a prototype program that recommends the nitrogen topdressing rate using the color digital camera image taken from rice field at panicle initiation stage (PIS). This program comprises four models to estimate shoot N content (PNup) by color digital image analysis, shoot N accumulation from PIS to maturity (PHNup), yield, and protein content of rice. The models were formulated using data set from N rate experiments in 2008. PNup was found to be estimated by non-linear regression model using canopy cover and normalized green values calculated from color digital image analysis as predictor variables. PHNup could be predicted by quadratic regression model from PNup and N fertilization rate at panicle initiation stage with $R^2$ of 0.923. Yield and protein content of rice could also be predicted by quadratic regression models using PNup and PHNup as predictor variables with $R^2$ of 0.859 and 0.804, respectively. The performance of the program integrating the above models to recommend N topdressing rate at PIS was field-tested in 2009. N topdressing rate prescribed for the target protein content of 6.0% by the program were lower by about 30% compared to the fixed rate of 30% that is recommended conventionally as the split application rate of N fertilizer at PIS, while rice yield in the plots top-dressed with the prescribed N rate were not different from those of the plots top-dressed with the fixed N rates of 30% and showed a little lower or similar protein content of rice as well. And coefficients of variation in rice yield and quality parameters were reduced substantially by the prescribed N topdressing. These results indicate that the N rate recommendation using the analysis of color digital camera image is promising to be applied for precise management of N fertilization. However, for the universal and practical application the component models of the program are needed to be improved so as to be applicable to the diverse edaphic and climatic condition.

Herbicidal Phytotoxicity under Adverse Environments and Countermeasures (불량환경하(不良環境下)에서의 제초제(除草劑) 약해(藥害)와 경감기술(輕減技術))

  • Kwon, Y.W.;Hwang, H.S.;Kang, B.H.
    • Korean Journal of Weed Science
    • /
    • v.13 no.4
    • /
    • pp.210-233
    • /
    • 1993
  • The herbicide has become indispensable as much as nitrogen fertilizer in Korean agriculture from 1970 onwards. It is estimated that in 1991 more than 40 herbicides were registered for rice crop and treated to an area 1.41 times the rice acreage ; more than 30 herbicides were registered for field crops and treated to 89% of the crop area ; the treatment acreage of 3 non-selective foliar-applied herbicides reached 2,555 thousand hectares. During the last 25 years herbicides have benefited the Korean farmers substantially in labor, cost and time of farming. Any herbicide which causes crop injury in ordinary uses is not allowed to register in most country. Herbicides, however, can cause crop injury more or less when they are misused, abused or used under adverse environments. The herbicide use more than 100% of crop acreage means an increased probability of which herbicides are used wrong or under adverse situation. This is true as evidenced by that about 25% of farmers have experienced the herbicide caused crop injury more than once during last 10 years on authors' nationwide surveys in 1992 and 1993 ; one-half of the injury incidences were with crop yield loss greater than 10%. Crop injury caused by herbicide had not occurred to a serious extent in the 1960s when the herbicides fewer than 5 were used by farmers to the field less than 12% of total acreage. Farmers ascribed about 53% of the herbicidal injury incidences at their fields to their misuses such as overdose, careless or improper application, off-time application or wrong choice of the herbicide, etc. While 47% of the incidences were mainly due to adverse natural conditions. Such misuses can be reduced to a minimum through enhanced education/extension services for right uses and, although undesirable, increased farmers' experiences of phytotoxicity. The most difficult primary problem arises from lack of countermeasures for farmers to cope with various adverse environmental conditions. At present almost all the herbicides have"Do not use!" instructions on label to avoid crop injury under adverse environments. These "Do not use!" situations Include sandy, highly percolating, or infertile soils, cool water gushing paddy, poorly draining paddy, terraced paddy, too wet or dry soils, days of abnormally cool or high air temperature, etc. Meanwhile, the cultivated lands are under poor conditions : the average organic matter content ranges 2.5 to 2.8% in paddy soil and 2.0 to 2.6% in upland soil ; the canon exchange capacity ranges 8 to 12 m.e. ; approximately 43% of paddy and 56% of upland are of sandy to sandy gravel soil ; only 42% of paddy and 16% of upland fields are on flat land. The present situation would mean that about 40 to 50% of soil applied herbicides are used on the field where the label instructs "Do not use!". Yet no positive effort has been made for 25 years long by government or companies to develop countermeasures. It is a really sophisticated social problem. In the 1960s and 1970s a subside program to incoporate hillside red clayish soil into sandy paddy as well as campaign for increased application of compost to the field had been operating. Yet majority of the sandy soils remains sandy and the program and campaign had been stopped. With regard to this sandy soil problem the authors have developed a method of "split application of a herbicide onto sandy soil field". A model case study has been carried out with success and is introduced with key procedure in this paper. Climate is variable in its nature. Among the climatic components sudden fall or rise in temperature is hardly avoidable for a crop plant. Our spring air temperature fluctuates so much ; for example, the daily mean air temperature of Inchon city varied from 6.31 to $16.81^{\circ}C$ on April 20, early seeding time of crops, within${\times}$2Sd range of 30 year records. Seeding early in season means an increased liability to phytotoxicity, and this will be more evident in direct water-seeding of rice. About 20% of farmers depend on the cold underground-water pumped for rice irrigation. If the well is deep over 70m, the fresh water may be about $10^{\circ}C$ cold. The water should be warmed to about $20^{\circ}C$ before irrigation. This is not so practiced well by farmers. In addition to the forementioned adverse conditions there exist many other aspects to be amended. Among them the worst for liquid spray type herbicides is almost total lacking in proper knowledge of nozzle types and concern with even spray by the administrative, rural extension officers, company and farmers. Even not available in the market are the nozzles and sprayers appropriate for herbicides spray. Most people perceive all the pesticide sprayers same and concern much with the speed and easiness of spray, not with correct spray. There exist many points to be improved to minimize herbicidal phytotoxicity in Korea and many ways to achieve the goal. First of all it is suggested that 1) the present evaluation of a new herbicide at standard and double doses in registration trials is to be an evaluation for standard, double and triple doses to exploit the response slope in making decision for approval and recommendation of different dose for different situation on label, 2) the government is to recognize the facts and nature of the present problem to correct the present misperceptions and to develop an appropriate national program for improvement of soil conditions, spray equipment, extention manpower and services, 3) the researchers are to enhance researches on the countermeasures and 4) the herbicide makers/dealers are to correct their misperceptions and policy for sales, to develop database on the detailed use conditions of consumer one by one and to serve the consumers with direct counsel based on the database.

  • PDF