• Title/Summary/Keyword: Nielsen numbers

Search Result 19, Processing Time 0.016 seconds

A NOTE ON NIELSEN TYPE NUMBERS

  • Lee, Seoung-Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.263-271
    • /
    • 2010
  • The Reidemeister orbit set plays a crucial role in the Nielsen type theory of periodic orbits, such as the Reidemeister set does in Nielsen fixed point theory. In this paper, using Heath and You's methods on Nielsen type numbers, we show that these numbers can be evaluated by the set of essential orbit classes under suitable hypotheses, and obtain some formulas in some special cases.

A relative root Nielsen number

  • Yang, Ki-Yeol
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.1
    • /
    • pp.245-252
    • /
    • 1996
  • The relative Nielsen number N(f;X,A) was introduced in 1986. It gives us a better, and ideally sharp, lower bound for the minimum number MF[f;X,A] of fixed points in the homotopy class of the map $f;(X,A) \to (X,A)$. Similarly, we also can think about the Nielsen map $f:(X,A) \to (X,A)$. Similarly, we also can be think about the Nielsen root theory. In this paper, we introduce a relative root Nielsen number N(f;X,A,c) of $f:(X,A) \to (Y,B)$ and show some basic properties.

  • PDF

COMPUTATION OF THE NIELSEN TYPE NUMBERS FOR MAPS ON THE KLEIN BOTTLE

  • Kim, Hyun-Jung;Lee, Jong-Bum;Yoo, Won-Sok
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.5
    • /
    • pp.1483-1503
    • /
    • 2008
  • Let f : M ${\rightarrow}$ M be a self-map on the Klein bottle M. We compute the Lefschetz number and the Nielsen number of f by using the infra-nilmanifold structure of the Klein bottle and the averaging formulas for the Lefschetz numbers and the Nielsen numbers of maps on infra-nilmanifolds. For each positive integer n, we provide an explicit algorithm for a complete computation of the Nielsen type numbers $NP_n(f)$ and $N{\Phi}_{n}(f)\;of\;f^{n}$.

A RELATIVE REIDEMEISTER ORBIT NUMBER

  • Lee, Seoung-Ho;Yoon, Yeon-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.193-209
    • /
    • 2006
  • The Reidemeister orbit set plays a crucial role in the Nielsen type theory of periodic orbits, much as the Reidemeister set does in Nielsen fixed point theory. In this paper, extending Cardona and Wong's work on relative Reidemeister numbers, we show that the Reidemeister orbit numbers can be used to calculate the relative essential orbit numbers. We also apply the relative Reidemeister orbit number to study periodic orbits of fibre preserving maps.

IRREDUCIBLE REIDEMEISTER ORBIT SETS

  • Lee, Seoung Ho
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.721-734
    • /
    • 2014
  • The Reidemeister orbit set plays a crucial role in the Nielsen type theory of periodic orbits, much as the Reidemeister set does in Nielsen fixed point theory. Extending our work on Reidemeister orbit sets, we obtain algebraic results such as addition formulae for irreducible Reidemeister orbit sets. Similar formulae for Nielsen type irreducible essential orbit numbers are also proved for fibre preserving maps.

NIELSEN TYPE NUMBERS FOR PERIODIC POINTS ON THE COMPLEMENT

  • LIM, IN TAIK
    • Honam Mathematical Journal
    • /
    • v.24 no.1
    • /
    • pp.75-86
    • /
    • 2002
  • A Nielsen number $\bar{N}(f:X-A)$ is a homotopy invariant lower bound for the number of fixed points on X-A where X is a compact connected polyhedron and A is a connected subpolyhedron of X. This number is extended to Nielsen type numbers $\bar{NP_{n}}(f:X-A)$ of least period n and $\bar{N{\phi}_{n}}(f:X-A)$ of the nth iterate on X-A where the subpolyhedron A of a compact connected polyhedron X is no longer path connected.

  • PDF

MINIMAL SETS OF PERIODS FOR MAPS ON THE KLEIN BOTTLE

  • Kim, Ju-Young;Kim, Sung-Sook;Zhao, Xuezhi
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.883-902
    • /
    • 2008
  • The main results concern with the self maps on the Klein bottle. We obtain the Reidemeister numbers and the Nielsen numbers for all self maps on the Klein bottle. In terms of the Nielsen numbers of their iterates, we totally determine the minimal sets of periods for all homotopy classes of self maps on the Klein bottle.